RECENT ADVANCES IN POLYTOPAL FINITE ELEMENT METHODS

IVAN FUMAGALLI^{*}, SERGIO GOMEZ[†]

* MOX, Dipartimento di Matematica, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milano, Italy ivan.fumagalli@polimi.it, https://fumagalli.faculty.polimi.it/

[†] Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca Via Cozzi 55, 20125, Milano, Italy <u>sergio.gomezmacias@unimib.it</u>

Key words: Polygonal/Polyhedral Mesh, Multi-Physics Problems, Structure-Preserving Methods, Adaptivity

ABSTRACT

Polytopal finite element methods for partial differential equations (PDEs) have been the subject of much attention in recent decades, both in terms of numerical analysis and employment in a diverse range of applications. This interest is due to the numerous advantages of such methods, as they allow for easier treatment of complex boundaries or interfaces, heterogeneous materials, structure-preserving properties, and adaptively refined meshes. This minisymposium focuses on recent advances and challenges in the theoretical and computational aspects of methods in the polytopal family - including Virtual Element (VE) [1], Polytopal Discontinuous Galerkin (PolyDG) [2], Hybrid High-Order (HHO) [3] methods - as well as their application to relevant models in fluid dynamics, elasticity, electromagnetism, wave propagation, and other areas.

REFERENCES

- [1] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, "Basic principles of virtual element methods", *Math Mod Meth Appl Sci.*, Vol. **23**(01), pp. 199–214, (2013).
- [2] P.F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E.H. Georgoulis, S. Giani, and P. Houston, *Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains*, In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (Eds) Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Vol. 144, pp. 279–308, Springer, Cham, (2016).
- [3] D.A. Di Pietro, A. Ern, S. Lemaire, A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods, In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (Eds) Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Vol. 144, pp. 205–236, Springer, Cham, (2016).