Recent advances in the Material Point Method for modelling fluids, granular materials, and coupled fluid-granular behavior

Kenichi Soga*, Bodhinanda Chandra*, Laurent Talbot*, Joel Given*, Connor Geudeker*, Ken Kamrin*, Ryota Hashimoto[†] and Jun Kurima[†]

* University of California Berkeley
Berkeley, CA, 94720, USA
e-mail: soga@berkeley.edu, web page: https://geomechanics.berkeley.edu/

† Kyoto University
Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan
Email: hashimoto.ryota.6e@kyoto-u.ac.jp

† University of Tokyo
Institute of Industrial Science, Meguro-ku, Tokyo, 153-8505, Japan

ABSTRACT

This presentation discusses recent developments in the Material Point Method (MPM) for modeling fluids, granular media, and coupled fluid-solid interactions in saturated granular systems. A stabilized mixed MPM formulation is introduced to address numerical instabilities in simulations of free-surface liquid flow and large-deformation solid response, with application to seepage-induced failure mechanisms. The coupling of MPM with the Volume of Fluid method for accurate free-surface tracking is also presented. Advances in constitutive modeling are also examined, including the incorporation of critical state soil mechanics and rate-dependent dilatancy to capture complex stress-strain responses. In addition, new MPM strategies for dynamic soil analyses are outlined, extending the applicability of the method to a broader range of geomechanics problems involving large deformation, multiphase flow, and soil-fluid interaction.

REFERENCES

- [1] Chandra, B., Hashimoto, R., Matsumi, S., Kamrin, K. and Soga, K., 2024. Stabilized mixed material point method for incompressible fluid flow analysis. Computer Methods in Applied Mechanics and Engineering, 419, p.116644.
- [2] Chandra, B., Hashimoto, R., Kamrin, K. and Soga, K., 2024. Mixed material point method formulation, stabilization, and validation for a unified analysis of free-surface and seepage flow. Journal of Computational Physics, 519, p. 113457
- [3] Kularathna, S., W. Liang, T. Zhao, B. Chandra, J. Zhao and K. Soga, "A semi-implicit material point method based on fractional-step method for saturated soil," International Journal for Numerical and Analytical Methods in Geomechanics, 2021, Vol.45(10), pp.1405-1436.
- [4] Kurima, J., Chandra, B. and Soga, K., 2025. Absorbing boundary conditions in material point method adopting perfectly matched layer theory. Soil Dynamics and Earthquake Engineering, 191, p.109219.
- [5] Given, J., Liang, Y., Zeng, Z., Zhang, X. and Soga, K., 2024. The virtual stress boundary method to impose nonconforming Neumann boundary conditions in the material point method. Computational Particle Mechanics, pp.1-25.
- [6] Liang, Y., B. Chandra and K. Soga, "Shear band evolution and post-failure simulation by the extended material point method (XMPM) with localization detection and frictional self-contact," Computer Methods in Applied Mechanics and Engineering, 2022, Vol. 390, p.114530.
- [7] Liang, Y., Given, J. and Soga, K. "The imposition of nonconforming Neumann boundary condition in the material point method without boundary representation," Computer Methods in Applied Mechanics and Engineering, 2023. 404, p.115785.
- [8] Molinos, M., Chandra, B., Stickle, M.M. and Soga, K. "On the derivation of a component-free scheme for Lagrangian fluid–structure interaction problems," 2023, Acta Mechanica, pp.1-33.
- [9] Talbot, L.E., Given, J., Tjung, E.Y., Liang, Y., Chowdhury, K., Seed, R. and Soga, K., 2024. Modeling large-deformation features of the Lower San Fernando Dam failure with the Material Point Method. Computers and Geotechnics, 165, p.105881.