7th International Conference on Geotechnical and Geophysical Site Characterization (ISC) June 17-21, 2024, Barcelona, Spain

SAMPLING DISTURBANCE: A PERENNIAL PROBLEM IN GEOTECHNICAL ENGINEERING

THOMAS SANDENE¹, LLUÍS MONFORTE² AND SIMON OBERHOLLENZER¹

¹ Norwegian Geotechnical Institute (NGI) Oslo (Norway) <u>thomas.sandene@ngi.no;</u> simon.oberhollenzer@ngi.no

² Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) Barcelona (SPAIN) <u>lmonforte@cimne.upc.edu</u>

ABSTRACT

Disturbance of soil specimens is a well-known and highly relevant problem in geotechnical engineering [1]. Recommendations on sampling equipment are available in literature and new sampling equipment have been developed to reach a better sampling quality in a wide range of materials, ranging from soft clays to coarse grained soils [2, 3].

Different procedures for assessing the sampling disturbance have been elaborated and are for example based on (i) visual (non-destructive) inspections of soil specimens [4], (ii) changes in void ratio and (iii) shear wave velocity when reconsolidating the soil specimen to the in-situ stress state [5,6] as well as numerical simulations [7]. Different possibilities of assessing sampling disturbance were compared by various researchers in the past; however, different procedures do not always lead to consistent results.

Unfortunately, high-quality specimens are not always available in practical engineering and soil parameters are often derived from partially to fully disturbed or remolded specimens for the geotechnical design. Consequently, a non-sufficient sampling technique or characterization of sampling disturbance can lead to conservative or non-conservative geotechnical design, depending on the skill and experience of the engineer to identify the disturbance and its consequences.

This mini-Symposium is intended to provide an overview of high-quality sampling and testing techniques in natural soils and artificial materials. Works aiming to quantify sampling disturbance by means of new and well-established procedures are welcome, either relying on field studies, laboratory modelling or numerical analysis. We especially welcome submissions focusing on (i) new or further development of high-quality sampling techniques, (ii) new possibilities of quantifying sample disturbance, (iii) the comparison of different procedures for assessing sampling disturbance and (iv) the effects of sample disturbance on geotechnical design.

REFERENCES

- [1] Hvorslev, M.J. (1949) Subsurface exploration and sampling of soils for civil engineering purposes. *American Society of Civil Engineers*.
- [2] Viana da Fonseca, A., Pineda, J. (2017) Getting high-quality samples in 'sensitive' soils for advanced laboratory tests. *Innovative Infrastructure Solutions* 2, 34.
- [3] Amundsen, H.A., Thakur, V., Emdal, A. (2016) Sample disturbances in the block samples of low plastic soft clays. 17th Nordic Geotechnical Meeting (NGM-2016).
- [4] Pineda, J.A., Arroyo, M., Sau, N., Gens, A. (2012) Testing block samples from silty deposits. *Geotechnical and Geophysical Site Characterization* 4.
- [5] Lunne, T., Berre, T., Strandvik, S. (1997) Sample disturbance effects in soft low plasticity Norwegian clay. *Symposium on Recent Developments in Soil and Pavement Mechanics*.
- [6] Ferreira, C., Viana da Fonseca, A., Nash D. (2011) Shear wave velocities for sample quality assessment on a residual soil. *Soils Foundations* 51(4), 683-692
- [7] Monforte, L., Arroyo, M., Carbonell, J.M., Gens, A. (2020) Large strain analysis of undrained smooth tube sampling. *Géotechnique* 72(3), 61-77