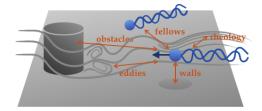
Navigation of Flagellated Micro-Swimmers

Laetitia Giraldi with C. Van Landeghem, L. Berti, C. Prud'homme, R. Chesneaux, Z. El Khiyati and J. Bec

July, 2023

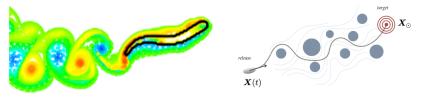
Challenges of micro-swimming

- Medical applications : driving micro-robots through our body
- Multidisciplinary fields (Maths, Physics, Biology and Robotic)
- Biomimetism



Controlling

Locomotion : Design realistic, complicated model (elasticity, fluid-structure interactions, etc.) **Navigation** : travel in a complex environment with simple models for displacement



 \Rightarrow find optimal gait for displacement

 \Rightarrow find optimal path to rapidly reach a target

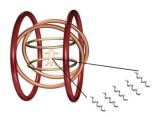
Alouges et al. (2013), Ghaffari et al. (2015), Loheac et al. (2015), Berti et al. (2021) \dots

Gustavsson et al. (2017), Biferale et al. (2019), Liebchen and Lowen (2019), Alaghesan et al. (2020) \dots

Usually treated separately, assuming large separation of scales

Flagellated locomotion

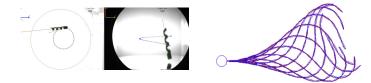
- Breakthrough \rightarrow in vivo experiments
- Problems : rigid robots
- The hope of the flagellated locomotion?



[B. Nelson et al., 2015]

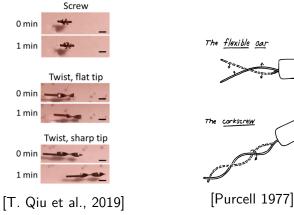
[I. S. M. Khalil et al. 2019]

Helicoidal versus flagellated locomotion



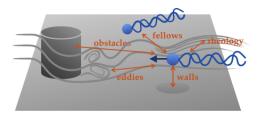
Flagellated locomotion

- The hope of the flagellated locomotion?
 - Capability to adapt the strategy
- How to control a flagellated robot?
 - Mathematical modeling
 - Control optimization tools



How to control (optimally) a flagellated micro-swimmer in a bodily fluids?

Locomotion and navigation occur at comparable scales.



Content

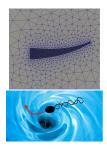
1. Locomotion

 Numerical methods for solving a swimmer dynamics

with C. Van Landeghem, L. Berti and C. Prud'homme

- 2. Locomotion + Navigation
 - Optimization through reinforcement learning

with R. Chesneaux, Z. El Khiyati and J. Bec



Numerical framework for micro-swimming

- [1] Modelling and finite element simulation of multi-sphere swimmers. Comptes Rendus. Mathématique, 2021
- [2] Reinforcement learning with function approximation for 3-spheres swimmer IFAC 2022
- [3] Mathematical and computation framework for moving and colliding rigid bodies in a Newtonian fluid. Submitted

► Feel++ software

joint work with C. Van Landeghem, L. Berti, V. Chabannes, C. Prud'homme, A. Chouippe, Y. Hoarau

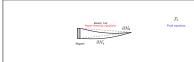
Prescribed deformation - Navier-Stokes

$$\begin{cases} \rho(\partial_t u|_{\mathbb{A}_t} + (u - u_{\mathbb{A}_t}) \cdot \nabla u) - \mu \Delta u + \nabla p = 0, & \text{in } \mathcal{F}_t, \\ \nabla \cdot u = 0, & \text{in } \mathcal{F}_t, \\ u = U \circ \mathbb{A}_t, & \text{on } \partial \mathcal{N}_t, \\ m \dot{\mathbf{v}} = -F_{fluid} + F^{int}, \\ J \dot{\Omega} = -M_{fluid} + M^{int}, \end{cases}$$

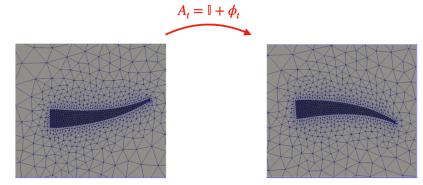
$$U := \underbrace{\mathbf{v} + \Omega \times (x - x^{CM}(t))}_{\text{total}} + \underbrace{\mathbf{u}_{d}(t)}_{\text{total}}$$

rigid motion

► For u_d prescribed ⇒ the rigid motion (**v** and Ω) are computed.



Arbitrary Lagrangian Eulerian framework

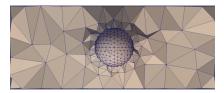


 ϕ_t :: swimmer's deformation and an harmonic extension elsewhere

ALE map describing the evolution of the computational domain

Numerical methods

- Classical ALE framework [Maury, 2000]
- Time discretization
- Spatial discretization \rightarrow conforming Lagrange finite elements
- Moving domain \rightarrow Arbitrary-Lagrangian-Eulerian technics
- Mesh (using MMG)
 - Mesh quality indices
 - Re-meshing metric \rightarrow distance to the swimmer
 - Interpolating
- ► Feel++



Algebraic strategy

$$\underbrace{\mathcal{P}^{\mathsf{T}}A\mathcal{P}}_{\mathcal{A}}\begin{bmatrix}\mathbf{u}_{I}\\\mathbf{u}_{\Gamma}\\\mathbf{U}\\\boldsymbol{\omega}\\\boldsymbol{p}\end{bmatrix}=\mathcal{P}^{\mathsf{T}}\begin{bmatrix}G_{I}\\G_{\Gamma}\\0\\0\\0\end{bmatrix}.$$

- Requires efficient implementation of $\mathcal{P}^T A \mathcal{P}$ in parallel
- Use a block preconditioner of type PCD or PMM

Micro-swimmers deformation gait

The deformation can be modeled by defining the deformation velocity u_d on the boundary of the swimmer.

Spermatozoon : *u*_d for a sinusoidal pla

$$u_d(t,x) = \begin{bmatrix} A_1 \cos(4\pi(t-x)) \\ A_2 \cos(2\pi(t-x)) \\ 0 \end{bmatrix}$$

where A_1 , A_2 define the amplitudes.

Multi-sphere swimmers :

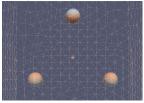
 u_d : : relative speed between the spheres.

Numerical simulations

Spermatozoon

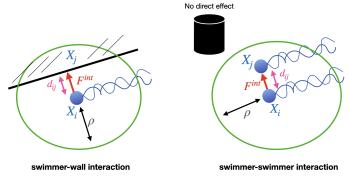
Three-sphere swimmer

Three-sphere swimmer planar



Feel++ Youtube channel [https://www.youtube.com/@FeelppOrgChannel] Feel++ [https://github.com/feelpp/feelpp]

Lubrification forces and torques

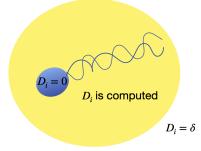


- Short-range repulsive force [R. Glowinski et al.]
- Activated when the distance between two bodies is less than ρ
- Prevent the bodies overlapping and direct contacts

$$\mathsf{F}^{int} = \left\{ \begin{array}{cc} 0 \ , \quad \text{for} \quad \quad \mathbf{d}_{ij} > \rho, \\ \frac{1}{\varepsilon} \overrightarrow{X_i X_j} (\rho - \mathbf{d}_{ij})^2 \ , \quad \text{for} \quad \quad 0 \le \mathbf{d}_{ij} \le \rho. \end{array} \right. \quad \mathsf{T}^{int} = -\overrightarrow{X^{CM} X_i} \times \mathsf{F}^{int},$$

Computation of the distance function

- Distance $D(x) : \mathbb{R}^3 \longrightarrow \mathbb{R}$ compute on the grid
- $\blacktriangleright \Rightarrow Costly ! !$
- Narrow band fast marching method
- ► *D* is computed only near the neighborhood around front



Narrow band fast marching method

Fast marching method performance

1.91.0

0.5

1.9

1.0

0.5

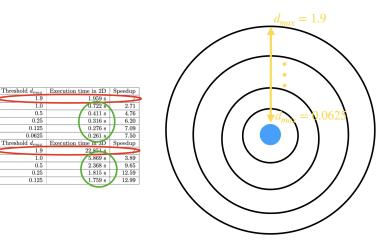
0.25

0.125

0.25

0.125

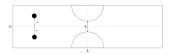
0.0625



 \blacktriangleright \Rightarrow The band should be narrow!

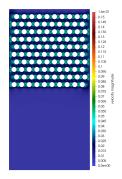
Collision simulations

Particles in a 2D symmetric stenotic artery



Zebra fish artery network

Multi-sphere falling down



Sum up

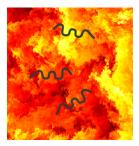
- Swimmer dynamics in a complex environment is very costly
- Optimize in this framework is a challenging task
- Less accuracy dynamics could help
- The importance of selecting the right optimization tools

Could machine learning help?

2. Locomotion + Navigation through Reinforcement Learning

Steering undulatory micro-swimmers in a moving fluid through reinforcement learning

Joint work with Raphael Chesneaux, Zakarya El Khiyati and Jérémie Bec

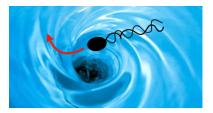


Main idea

How to swim throught eddies?

Process

- Learn into a "simple fluid flow"
 - Stationary flow with same shape vortices
- Select the best swimmer's (strategies)
- Swim into turbulence with these strokes



Simpler flagellated swimmer's dynamics

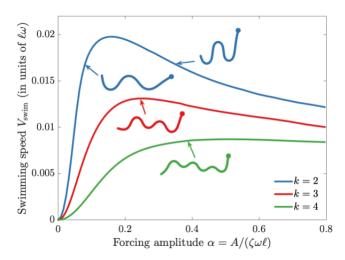
Cosserat equation (semi-flexible, inextensible, slender body)

$$\sigma \partial_t^2 \mathbf{X} = \underbrace{\zeta \mathbb{D}^{-1}[\partial_t \mathbf{X} - \mathbf{u}(\mathbf{X}, \mathbf{t})]}_{\text{viscous drag}} + \underbrace{\partial_s(T \partial_s \mathbf{X})}_{\text{tension}} - \underbrace{El \partial_s^4 \mathbf{X}}_{\text{elasticity}} + \underbrace{f(s, t)}_{\text{locomotion force}}$$
$$\mathbb{D} = \mathbb{I} + \partial_s \mathbf{X} \partial_s \mathbf{X}^\mathsf{T}, \qquad \zeta = \frac{8\pi\mu}{1 + 2\log(\mathbf{I}/\mathbf{a})}$$
$$\overset{\ell/2}{\underset{a \ll \ell}{\overset{s}{\underset{a \atop{s}}{\underset{a \iff \ell}{\overset{s}{\underset{a \atop{s}}{\underset{a \iff \ell}{\overset{s}{\underset{a \atop{s}}{\underset{a \atop{s}}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}{\underset{s}}}$$

 Solving using semi-implicit second-order centred finite difference scheme (see [Tornberg and Shelley (2004)])

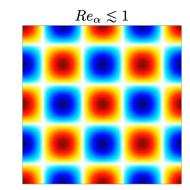
Active locomotion force without an external flow

- Planar undulation : $f(s, t) = A\cos(\nu s \omega t)\mathbf{p}_{\perp}$
- No net momentum : $\nu = \frac{2\pi k}{l}$, $k \in \mathbb{Z}$



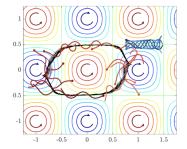
A simple flow : 2D cellular flow

$$\mathbf{u} = \nabla^{\perp} \mathbf{F}$$
 where $\mathbf{F}(\mathbf{x}, \mathbf{t}) = \frac{\mathbf{LU}}{\pi} \cos(\pi \mathbf{x}_1 / \mathbf{L}) \cos(\pi \mathbf{x}_2 / \mathbf{L})$



Stable, stationary (cellular/BC/Taylor-Green) ${oldsymbol u} \propto
abla^\perp F$

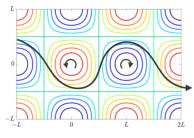
Without any strategy - Trap swimmers



- Red one cycles across several cells
- Blue one is stuck between two cells swimming against the flow

Settings

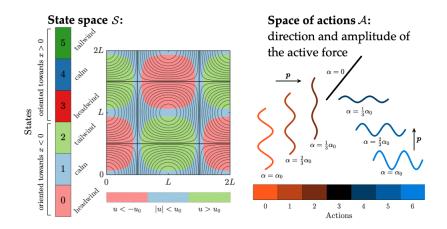
- Locomotion force : controlling the intensity and the wave direction
- Navigation problem : move toward x > 0
- Optimization problem : maximize the speed during a large time



Surfing

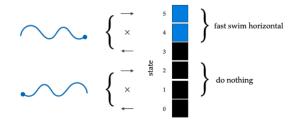
Difficulties : Although the fluid flow is stationary, the swimmer's dynamics is chaotic.

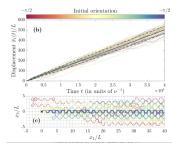
Discretize the optimization problem



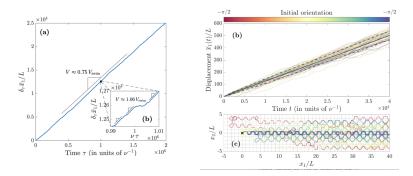
Policy : choose action given current state $(a, s) \in \mathcal{A} \times \mathcal{S} \rightarrow \pi(a, s)$

Naive strategy





Performance of the naive strategy



- Trapping events are no more stable !
- $\blacktriangleright \implies$ Naive strategy leads to a positive displacement

Q-learning

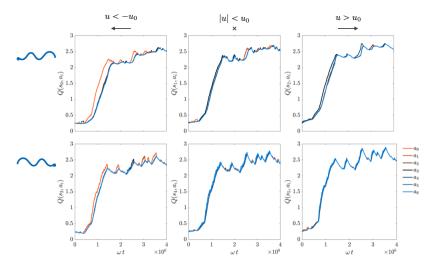
- The agent in a state s(t) ∈ S decides the action a(t) ∈ A ⇒ reward r(t) and enters in s(t + Δt)
- The algorithme maximises an expected future reward $Q: \mathcal{S} imes \mathcal{A} o \mathbb{R}$

$$a(t) = \left\{egin{array}{ll} a_* = rg\max_{\mathcal{A}} Q(s(t), a) & ext{with prob. } 1 - arepsilon \ \mathcal{A} & \ a
eq a_* & ext{with prob. } arepsilon \end{array}
ight.$$

- ► The Q-function is updated at each step according to $Q^{\text{new}}(s(t), a(t)) = (1 - \lambda)Q(s(t), a(t))$ $+ \lambda (r(t) + \gamma \max_{A} Q(s(t + \Delta t), a))$
- λ : : learning rate \leftrightarrow typical time to travel 1 cell
- γ : : discount factor \leftrightarrow typical time to travel 10 cells
- Convergence ensured for Markovian decision process with conditions

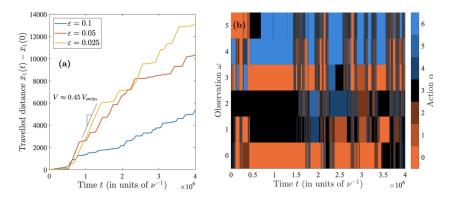
Q-learning : no convergence

► coarse discretization into state and action → Partially observable markov decision process



Laetitia Giraldi

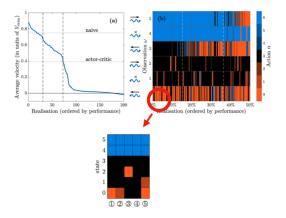
Q-learning : no convergence



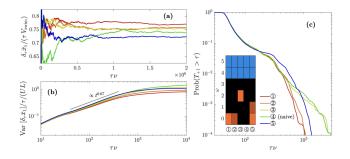
Succession of surfing and trapping events

Select a set of admissible policies

- Various methods of reinforcement learning (SARSA, Actor-critic) fails
- Q-learning allows to select "admissible" policies



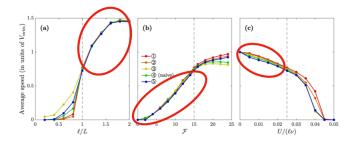
Performance a set of admissible policies



- Mean and Variance of the displacement relatively similar
- Proba to be trap into one cell is much smaller for 1 and 2

Robustness with respect to physical parameters

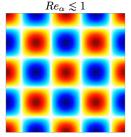
Lenght ratio - Flexibility and Amplitude of the fluid flow



 \Rightarrow The performance ranking is not affected in the "red zone"

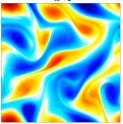
Into turbulent flow

2D Navier-Stokes $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \mathbf{p} + \mu \nabla^2 \mathbf{u} - \alpha \mathbf{u} + \nabla^{\perp} \mathbf{F}$, $\nabla \mathbf{u} = \mathbf{0}$ $Re_{\alpha} = \frac{U}{\alpha L}$



Stable, stationary (cellular/BC/Taylor-Green) $oldsymbol{u} \propto
abla^\perp F$

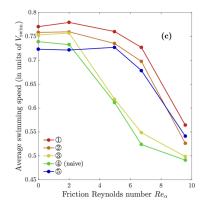
 $Re_{\alpha} \gtrsim 1$



Unstable, turbulent

- Transition to turbulent by increasing Re_{α}
- Numerical simulation made by a speudo-spectral solver

Robustness into turbulent flow



 Learned strategies globally work but with increasing effects of trapping

Summary and perspectives

- Convergence of Q-learning algorithms is not granted, certainly due to both non-Markovianity and chaoticity
- ▶ *Q*-learning algorithms allow to select some "good" strategies
- Towards more realistic models
- $\blacktriangleright \rightarrow \mathsf{Complex} \ \mathsf{flow}$
- \blacktriangleright \rightarrow Complex environment
- ANR NEMO

► Thanks for your attention.