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Challenges of micro-swimming

I Medical applications : driving micro-robots through our body
I Multidisciplinary fields (Maths, Physics , Biology and Robotic)
I Biomimetism
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Controlling
Locomotion : Design realis-
tic, complicated model (elasti-
city, fluid-structure interactions,
etc.)

⇒ find optimal gait for displace-
ment

Alouges et al. (2013), Ghaffari et al. (2015), Loheac et
al. (2015), Berti et al. (2021) ...

Navigation : travel in a complex
environment with simple models
for displacement

⇒ find optimal path to rapidly
reach a target

Gustavsson et al. (2017), Biferale et al. (2019), Liebchen
and Lowen (2019), Alaghesan et al. (2020) ...

Usually treated separately, assuming large separation of scales
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Flagellated locomotion

I Breakthrough → in vivo experiments
I Problems : rigid robots
I The hope of the flagellated locomotion ?

[B. Nelson et al., 2015]

[I. S. M. Khalil et al. 2019]
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Helicoidal versus flagellated locomotion
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Flagellated locomotion
I The hope of the flagellated locomotion ?

I Capability to adapt the strategy
I How to control a flagellated robot ?

I Mathematical modeling
I Control - optimization tools

[T. Qiu et al., 2019] [Purcell 1977]
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How to control (optimally) a flagellated micro-swimmer in a bodily
fluids ?

I Locomotion and navigation occur at comparable scales.
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Content

1. Locomotion
I Numerical methods for solving

a swimmer dynamics
with C. Van Landeghem, L. Berti and C. Prud’homme

2. Locomotion + Navigation
I Optimization through

reinforcement learning
with R. Chesneaux, Z. El Khiyati and J. Bec
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Numerical framework for micro-swimming

I [1] Modelling and finite element simulation of multi-sphere
swimmers. Comptes Rendus. Mathématique, 2021

I [2] Reinforcement learning with function approximation for
3-spheres swimmer IFAC 2022

I [3] Mathematical and computation framework for moving and
colliding rigid bodies in a Newtonian fluid. Submitted

I Feel++ software

joint work with C. Van Landeghem, L. Berti, V. Chabannes, C.
Prud’homme, A. Chouippe, Y. Hoarau
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Prescribed deformation - Navier-Stokes



ρ(∂tu|At + (u − uAt ) · ∇u)− µ∆u +∇p = 0, in Ft ,

∇ · u = 0, in Ft ,

u = U ◦ At , on ∂Nt ,

mv̇ = −Ffluid + F int ,

JΩ̇ = −Mfluid + M int ,

U := v + Ω× (x − xCM(t))︸ ︷︷ ︸
rigid motion

+
deformation︷ ︸︸ ︷

ud(t)

I For ud prescribed
⇒ the rigid motion (v and Ω)
are computed.

Ft
Fluid equations

Elastic tail
Hyper-elasticity equations

∂Nt

∂N0

Magnet
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Arbitrary Lagrangian Eulerian framework
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Numerical methods
I Classical ALE framework [Maury, 2000]
I Time discretization
I Spatial discretization → conforming Lagrange finite elements
I Moving domain → Arbitrary-Lagrangian-Eulerian technics
I Mesh (using MMG)

I Mesh quality indices
I Re-meshing metric → distance to the swimmer
I Interpolating

I Feel++
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Algebraic strategy

PTAP︸ ︷︷ ︸
A


uI
uΓ
U
ω
p

 = PT


GI
GΓ
0
0
0

 .

I Requires efficient implementation of PTAP in parallel
I Use a block preconditioner of type PCD or PMM
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Micro-swimmers deformation gait

The deformation can be modeled by defining the deformation velocity ud on
the boundary of the swimmer.

Spermatozoon : ud for a sinusoidal planar wave :

ud(t, x) =

[A1 cos(4π(t − x))
A2 cos(2π(t − x))

0

]
where A1, A2 define the amplitudes.

Multi-sphere swimmers :

ud : : relative speed between the spheres.
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Numerical simulations

Spermatozoon Three-sphere swimmer

Three-sphere swimmer planar

Feel++ Youtube channel [https ://www.youtube.com/@FeelppOrgChannel]
Feel++ [https ://github.com/feelpp/feelpp]
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Lubrification forces and torques

I Short-range repulsive force [R. Glowinski et al.]
I Activated when the distance between two bodies is less than ρ
I Prevent the bodies overlapping and direct contacts

F int =
{ 0 , for dij > ρ,

1
ε

−−→
XiXj(ρ− dij)2 , for 0 ≤ dij ≤ ρ.

T int = −
−−−−→
XCMXi × F int ,
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Computation of the distance function
I Distance D(x) : R3 −→ R compute on the grid
I ⇒ Costly ! !
I Narrow band fast marching method
I D is computed only near the neighborhood around front
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Fast marching method performance

I ⇒ The band should be narrow !
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Collision simulations

Particles in a 2D symmetric
stenotic artery

Zebra fish artery network

Multi-sphere falling down
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Sum up

I Swimmer dynamics in a complex environment is very costly
I Optimize in this framework is a challenging task
I Less accuracy dynamics could help
I The importance of selecting the right optimization tools

Could machine learning help ?
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2. Locomotion + Navigation through Reinforcement
Learning

Steering undulatory micro-swimmers in a moving fluid through
reinforcement learning

Joint work with Raphael Chesneaux, Zakarya El Khiyati and
Jérémie Bec
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Main idea

How to swim throught eddies ?

Process
I Learn into a ”simple fluid flow”

I Stationary flow with same shape vortices
I Select the best swimmer’s (strategies)
I Swim into turbulence with these strokes
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Simpler flagellated swimmer’s dynamics
I Cosserat equation (semi-flexible, inextensible, slender body)

σ∂2tX = ζD−1[∂tX− u(X, t)]︸ ︷︷ ︸
viscous drag

+ ∂s(T∂sX)︸ ︷︷ ︸
tension

− EI∂4sX︸ ︷︷ ︸
elasticity

+ f (s, t)︸ ︷︷ ︸
locomotion force

D = I + ∂sX∂sXT , ζ = 8πµ
1 + 2 log(l/a)

I Inextensibility constraint
←→ ∂s‖X‖ = 1

I Solving using semi-implicit second-order centred finite
difference scheme (see [Tornberg and Shelley (2004)])
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Active locomotion force without an external flow
I Planar undulation : f (s, t) = A cos(νs − ωt)p⊥
I No net momentum : ν = 2πk

l , k ∈ Z
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A simple flow : 2D cellular flow

u = ∇⊥F where F(x, t) = LU
π

cos(πx1/L) cos(πx2/L)
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Without any strategy - Trap swimmers

I Red one cycles across
several cells

I Blue one is stuck between
two cells swimming against
the flow

Laetitia Giraldi Microswimming 26



Settings
I Locomotion force : controlling the intensity and the wave

direction
I Navigation problem : move toward x > 0
I Optimization problem : maximize the speed during a large

time

Surfing

Difficulties : Although the fluid flow is stationary, the swimmer’s
dynamics is chaotic.
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Discretize the optimization problem

Policy : choose action given current state (a, s) ∈ A×S → π(a, s)
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Naive strategy
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Performance of the naive strategy

I Trapping events are no more stable !
I =⇒ Naive strategy leads to a positive displacement
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Q-learning
I The agent in a state s(t) ∈ S decides the action a(t) ∈ A
⇒ reward r(t) and enters in s(t + ∆t)

I The algorithme maximises an expected future reward
Q : S ×A → R

a(t) =

 a∗ = argmax
A

Q(s(t), a) with prob. 1− ε

a 6= a∗ with prob. ε
I The Q-function is updated at each step according to

Qnew(s(t), a(t)) = (1− λ)Q(s(t), a(t))

+ λ
(
r(t) + γmax

A
Q(s(t + ∆t), a)

)
I λ : : learning rate ↔ typical time to travel 1 cell
I γ : : discount factor ↔ typical time to travel 10 cells
I Convergence ensured for Markovian decision process with

conditions
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Q-learning : no convergence
I coarse discretization into state and action → Partially

observable markov decision process
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Q-learning : no convergence

I Succession of surfing and trapping events
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Select a set of admissible policies
I Various methods of reinforcement learning (SARSA,

Actor-critic) fails
I Q-learning allows to select ”admissible” policies
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Performance a set of admissible policies

I Mean and Variance of the displacement relatively similar
I Proba to be trap into one cell is much smaller for 1 and 2
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Robustness with respect to physical parameters

I Lenght ratio - Flexibility and Amplitude of the fluid flow

⇒ The performance ranking is not affected in the ”red zone”
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Into turbulent flow

2D Navier-Stokes ∂tu+u·∇u = −∇p+µ∇2u−αu+∇⊥F , ∇u = 0

Reα = U
αL

I Transition to turbulent by increasing Reα

I Numerical simulation made by a speudo-spectral solver
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Robustness into turbulent flow

I Learned strategies globally work but with increasing effects of
trapping
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Summary and perspectives

I Convergence of Q−learning algorithms is not granted,
certainly due to both non-Markovianity and chaoticity

I Q−learning algorithms allow to select some ”good” strategies
I Towards more realistic models
I → Complex flow
I → Complex environment
I ANR NEMO
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I Thanks for your attention.
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