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C∗–Algebras and States C∗–Algebras

C ∗–Algebras

Definition (∗–Algebra)

The mapping A 7→ A∗ from an algebra X to itself is an involution, when
(i) ∀A ∈ X : (A∗)∗ = A.
(ii) ∀A,B ∈ X : (AB)∗ = B∗A∗.
(iii) ∀A,B ∈ X , ∀α, β ∈ C: (αA + βB)∗ = ᾱA∗ + β̄B∗.
An algebra X with an involution is a ∗–algebra.

Definition (C ∗–Algebra)

(i) Let ‖ · ‖X be a norm on a vector space X . Then, X ≡ (X , ‖ · ‖X ) is a normed
algebra whenever X is an algebra and ‖AB‖X ≤ ‖A‖X‖B‖X for A,B ∈ X .

(ii) A normed algebra X is a Banach algebra if X is complete w.r.t the norm ‖ · ‖X .

(iii) A Banach algebra X equipped with an involution such that ‖A‖X = ‖A∗‖X for
A ∈ X is a Banach ∗–algebra.

(iv) A Banach ∗–algebra X is a C∗–algebra whenever ‖A∗A‖X = ‖A‖2
X for A ∈ X .
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C∗–Algebras and States C∗–Algebras

C ∗–Algebras

Definition (C ∗–Algebra)

A C∗–algebra X is a complete, normed algebra equipped with an involution ∗ such that

‖A∗A‖X = ‖A‖2
X , A ∈ X .

Properties on C∗–algebras:

If the identity 1 ∈ X exists then it is unique, self–adjoint, and ‖1‖X = 1. In this
case, X is a unital C∗–algebra. Any C∗–algebra can be extended to a unital
C∗–algebra.

If X is a Banach ∗–algebra, then there is a unique norm ‖ · ‖X on X such that
(X , ‖ · ‖X ) is a C∗–algebra.

Notation: From now, X is always a C∗–algebra with identity 1, i.e., a unital C∗–algebra.
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C∗–Algebras and States C∗–Algebras

Examples of C ∗–Algebras

Example 1: Let H be a Hilbert space. The space

(B(H), ‖ · ‖op, ·, ∗)

of bounded linear operators from H to H is a unital C∗–algebra. “·” is the standard
product of linear operators and, for all A ∈ B(H), A∗ ∈ B(H) is its self–adjoint
operator. Here, the norm is defined by

‖A‖op := sup
ϕ∈H,‖ϕ‖=1

‖Aϕ‖H <∞.

Example 2: Let K be a compact set and C(K) be the complex vector space of
continuous functions from K to C. For all f ∈ C(K), let

‖f ‖∞ := sup
x∈K
|f (x)| <∞.

Then, (C(K), ‖ · ‖C(K)) is a Banach space and by defining the involution by

f ∗(x) := f (x)

and the pointwise product, (C(K), ‖ · ‖∞, ·, ∗) is a commutative unital C∗–algebra and
all commutative unital C∗–algebras are of this form.
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C∗–Algebras and States C∗–Algebras

Representation of C ∗–Algebras

Definition (Representation of C ∗–algebras)

(i) A representation of X is a pair (π,H), H being a Hilbert space and π : X → B(H) a
∗–homomorphism.

(ii) A representation (π,H) is faithful if π is injective.

(iii) Let (π,H) be a representation of X . If

π(X )Ω = H

for some Ω ∈ H then Ω is called a cyclic vector and the triplet (π,H,Ω) is called a
cyclic representation of X .

Any C∗–algebra has a faithful representation, by Gelfand–Naimark’s theorem.

The notion of representation is pivotal to understand the difference between the
algebraic and Hilbert space formulation of quantum mechanics.
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C∗–Algebras and States States on C∗–algebras

States on C ∗–algebras

Notation: X is a unital C∗–algebra. The identity is always denoted by 1. The
topological dual space is denoted by X ∗.

Definition (States on C ∗–algebras)

(i) ρ : X → C is positive (ρ ≥ 0) if ρ(A∗A) ≥ 0 for all A ∈ X .

(ii) ρ : X → C is a state if ρ ≥ 0 and ρ(1) = 1.

Theorem (Equivalent definition of states)

ρ is a state iff ρ : X → C is a linear functional and

‖ρ‖X∗ := sup
A∈X ,‖A‖X=1

|ρ (A)|2 = ρ(1) = 1.

In fact, a linear functional ρ : X → C is positive iff ‖ρ‖X∗ = ρ(1).

Positive functionals ρ : X → C are continuous, i.e., ρ ∈ X ∗.
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C∗–Algebras and States States on C∗–algebras

Examples of States

Example 1: Let H be a Hilbert space and X ⊂ B(H) be a unital C∗–algebra.
(i) For ψ ∈ H with ‖ψ‖H = 1, one defines a state ρψ : X → C by

ρψ(A) = 〈ψ,Aψ〉, A ∈ X ,

(ii) Let D ∈ L1(H) (trace–class operators) with D ≥ 0 and TrD = 1. Then the map
ρD : X → C defined by

ρD(A) = Tr (DA), A ∈ X ,
is well–defined as L1(H)B(H) ∈ L1(H) and is a state.

Example 2: Let K be a compact set and X = C(K). Let a ∈ K and ρa : X → C defined
by ρa(f ) = f (a). Then ρa(1) = 1 and ρa(f ∗f ) ≥ 0 for all f ∈ X , i.e., ρa is a state of X .

Example 3: Let K be a compact set and X = C(K). Let µ be a probability measure on
K and the map ρµ : X → C be defined by

ρµ(f ) =

∫
K

f (x)dµ(x).

Then ρµ(1) = 1 and ρµ(f ∗f ) ≥ 0 for all f ∈ X , which means that ρµ is a state of X .
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C∗–Algebras and States States on C∗–algebras

Examples of States

Example 3: Let K be a compact set and X = C(K). Let µ be a probability measure on
K and the map ρµ : X → C be defined by

ρµ(f ) =

∫
K

f (x)dµ(x).

Then ρµ(1) = 1 and ρµ(f ∗f ) ≥ 0 for all f ∈ X , which means that ρµ is a state of X .

Theorem (Riesz–Markov)

Let K be a compact metrizable set, X = C(K) and ρ be a state. Then there is a unique
probability measure µρ on K such that

ρ(f ) =

∫
K

f (x)dµρ(x), f ∈ X .

Recall that all commutative unital C∗–algebras are of the form C(K) for some
compact set K . In particular, in this case, states can always be seen as probability
measures.
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C∗–Algebras and States States on C∗–algebras

Properties of States

Theorem (Properties of states)

(i) ρ ≥ 0 implies that ρ(A) = ρ(A∗) for all A ∈ X .

(ii) ρ(A) = 0 for all states ρ ⇒ A = 0.

(iii) ρ(A) ∈ R for all states ρ ⇒ A∗ = A.

(iv) ρ(A) ≥ 0 for all states ρ ⇒ A = B∗B ≥ 0.

(v) A ∈ X is normal (i.e., AA∗ = A∗A) ⇒ ∃ a state ρ so that |ρ(A)| = ‖A‖X .

Lemma (Cauchy–Schwarz inequality)

ρ ∈ X ∗ and ρ ≥ 0 imply that, for all A,B ∈ X ,

|〈A,B〉ρ|2 := |ρ(B∗A)|2 ≤ ρ(A∗A)ρ(B∗B) =: 〈A,A〉ρ〈A,B〉ρ.

and
ρ(B∗AB) ≤ ‖A‖X ρ(B∗B).
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C∗–Algebras and States GNS Representation of States

GNS (Gel’fand–Naimark–Segal) Representation

Let X be a unital C∗–algebra and ρ a state. Define

Lρ := {A ∈ X : ρ(A∗A) = 0}

A scalar product 〈·, ·〉ρ in X/Lρ can be defined by

〈A + Lρ,B + Lρ〉ρ = ρ(B∗A)

Lρ is a closed left–ideal of X , i.e., Lρ is a closed subspace such that XLρ ⊂ Lρ.
For all A ∈ X ,

π̃ρ(A)(B + Lρ) = AB + Lρ
defines a linear operator π̃ρ(A) : X/Lρ → X/Lρ with

‖π̃ρ(A)‖X/Lρ := sup
B∈X/Lρ,B 6=0

√
ρ (B∗A∗AB)

ρ (B∗B)
≤ ‖A‖X .

Hρ := X/Lρ
〈·,·〉ρ

is an Hilbert space and π̃ρ has a continuous extension denoted
by πρ : X → B(Hρ). It leads to the GNS–representation of ρ.
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C∗–Algebras and States GNS Representation of States

GNS (Gel’fand–Naimark–Segal) Representation

A representation of X is a pair (π,H), H being Hilbert space and π : X → B(H)
a ∗–homomorphism. If π(X )Ω = H for some Ω ∈ H then Ω is a cyclic vector and
the triplet (π,H,Ω) is a cyclic representation of X .

Let Lρ := {A ∈ X : ρ(A∗A) = 0}.

Definition (GNS-representation (HρΩρ, πρ) of a state ρ)

(a) Hρ := completion of X/Lρ with respect to the scalar product;
(b) Ωρ := (1 + Lρ) ∈ Hρ;
(c) πρ := representation on Hρ of X defined by πρ(A)(B + Lρ) = AB + Lρ, A,B ∈ X .

Theorem
Let ρ be a state on a unital C∗–algebra X . There is a unique (up to a unitary
transformation) cyclic representation (πρ,Hρ,Ωρ) such that

ρ(A) = 〈Ωρ, πρ(A)Ωρ〉Hρ , A ∈ X .
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C∗–Algebras and States GNS Representation of States

Observations

The GNS representation has led to very important applications of the
Tomita–Takesaki theory, developed in seventies, to Quantum Field Theory and
Statistical Mechanics.

These developments mark the beginning of the algebraic approach to Quantum
Mechanics and Quantum Field Theory.

The algebraic formulation turned out to be extremely important and fruitful for
the mathematical foundations of Quantum Statistical Mechanics (mainly until the
nineties).

Formalism constructed to study thermodynamic limits of quantum systems at any
fixed particle density and temperature (notion of KMS states).

Last but not least, no reasonable microscopic theory of first order phase transitions
is possible within the Hilbert space based approach, and the use of the algebraic
setting is imperative.
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C∗–Algebras and States GNS Representation of States
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Formulations of Quantum Mechanics Hilbert Space Formulation

Schrödinger / Heisenberg Pictures of Quantum Mechanics

(S1) Schrödinger picture: Let H = H∗ ∈ B(H) acting on some Hilbert space H. For
any t ∈ R and initial state ψ (0) ∈ H at t = 0, the Schrödinger equation is

i∂tψ (t) = Hψ (t) , i.e., ψ (t) = e−itHψ (0) .

Expectation value at time t ∈ R of an observable B = B∗ ∈ B(H):

〈ψ (t) ,Bψ (t)〉 = 〈ψ (0) , eitHBe−itHψ (0)〉, t ∈ R.

(H2) Heisenberg picture: The map B 7→ τt (B) := eitHBe−itH defines a
(automorphism) group which satisfies

∀t ∈ R : ∂tτt (B) = τt ◦ δ (B) , with δ (B) := i [H,B] .

If Ht = H∗t is time–dependent, we obtain a two–parameter family {τt,s}s,t∈R of
automorphisms satisfying

∀s, t ∈ R : ∂tτt,s (B) = τt,s ◦ δt (B) , with δt (B) := i [Ht ,B] .
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Formulations of Quantum Mechanics Hilbert Space Formulation

Physical Properties of Quantum Systems

Set of states: Continuous linear functionals ρ ∈ X ∗ that are positive and
normalized on some C∗-algebra X . For instance, on X = B(H) with H being
some Hilbert space, and for B ∈ B(H) and some ψ ∈ H,

ρψ (B) = 〈ψ,Bψ〉, B ∈ B(H).

More generally, for H = H∗ acting on H with Trace
(
e−βH

)
<∞, β > 0,

ρH,β (B) =
Trace

(
Be−βH

)
Trace (e−βH)

, B ∈ B(H).

Algebra of observables: Self-adjoint elements of a C∗-algebra X , like the
self-adjoint elements of B(H), with H being some Hilbert space.

⇓

1 Hilbert-space formulation of QM: Fix first a Hilbert space H.

2 Algebraic formulation of QM: Fix first a C∗-algebra X .
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Formulations of Quantum Mechanics Algebraic Formulation

Heisenberg /Schrödinger Pictures of Quantum Mechanics

(H1) Heisenberg picture: One uses a pair constituted of a C∗–algebra X and a group
{τt}t∈R of ∗–automorphisms (i.e., a C∗–dynamical system). The set {τt (A)}t∈R
represents the time-evolution of any element A ∈ X .

(S2) Schrödinger picture: Any physical state of the system is given by a state ρ ∈ X ∗.
The expectation value at time t ∈ R of an observable A = A∗ ∈ X is given by

A 7→ ρ ◦ τt (A) ∈ R

and ρt := ρ ◦ τt defines the time-evolution of the state in the Schrödinger picture.

The Hilbert space formulation is recovered from the GNS–representation (πρ,Hρ,Ωρ):

H ⇒ Hilbert space Hρ.

πρ (X ) ⊆ B(Hρ).

The expectation value at time t ∈ R of an observable A = A∗ ∈ X is given by

ρt = ρ ◦ τt (A) = 〈Ωρ, πρ(τt (A))Ωρ〉 ∈ R.
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Formulations of Quantum Mechanics Algebraic Formulation

Towards the Hilbert Space Formulation

The Hilbert space formulation is recovered from the GNS–representation (πρ,Hρ,Ωρ):

H ⇒ Hilbert space Hρ and πρ (X ) ⊆ B(Hρ).

The expectation value at time t ∈ R of an observable A = A∗ ∈ X is given by

ρt = ρ ◦ τt (A) = 〈Ωρ, πρ(τt (A))Ωρ〉 ∈ R.

The dynamics can be unitarily implemented when the state is stationary:

Theorem
Let X be a unital C∗–algebra and a group {τt}t∈R of ∗–automorphisms.
(i) Then, there is has at least one stationary state ρ ∈ X ∗, i.e., ρ ◦ τt = ρ for all t ∈ R.
(ii) Let (Hρ, πρ,Ωρ) be its GNS–representation. Then, there is a unique family (Ut)t∈R
of unitary operators Hρ → Hρ such that, for all A ∈ X and t ∈ R,

Ωρ = UtΩρ and πρ(τt(A)) = Utπρ(A)U∗t .

(iii) (Ut)t∈R is strongly continuous, i.e., for all ψ ∈ Hρ, the mapping t 7→ Utψ is a
continuous function from R to Hρ. In particular, Ut = eitH with H = H∗ acting on Hρ.
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Formulations of Quantum Mechanics Algebraic Formulation
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Many-Body Systems in the Hilbert-space formulation of QM Systems in the Limit of Finite Particle Numbers

Hilbert-Space of Quantum Particles

Consider one quantum particle in Ω = Rd , Zd , etc.:

H1 = L2 (Ω) .

Consider N different quantum particles in Ω = Rd , Zd , etc.:

HN =
(
L2 (Ω)

)⊗N

= L2(ΩN).

Consider N identical quantum particles in Ω = Rd , Zd , etc.:

HN =
{
ψ ∈ L2(ΩN) : ∀permutation π, ψ (x1, . . . , xN) = επψ

(
xπ(1), . . . , xπ(N)

)}
.

There are basically two choices:

1 Bosons: επ = 1.

2 Fermions: επ = sgn (π) is the sign of the permutation π.
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Many-Body Systems in the Hilbert-space formulation of QM Systems in the Limit of Finite Particle Numbers

Finite Number of Identical Particles

Consider N identical quantum in Ω = Rd , Zd , etc.:

HN =
{
ψ ∈ L2(ΩN) : ∀permutation π, ψ (x1, . . . , xN) = επψ

(
xπ(1), . . . , xπ(N)

)}
Hamiltonian of the system: for external potential V : Ω→ R and some pair
(interaction) potential v : R+ → R,

HN =
N∑
i=1

(−∆i + V (xi )) +
∑

1≤i<j≤N

v (|xi − xj |)

1 Ground state ϕN (if it exists):

EN := inf
ψ∈HN

〈ψ,HNψ〉HN
= 〈ϕN ,HNϕN〉HN

.

2 Schrödinger equation:

i∂tψ (t) = HNψ (t) , ψ (0) ∈ HN .
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Many-Body Systems in the Hilbert-space formulation of QM Systems in the Limit of Finite Particle Numbers

Many-Boson Systems

Consider N bosons in Ω = R3:

HN =
{
ψ ∈ L2(R3N) : ∀permutation π, ψ (x1, . . . , xN) = ψ

(
xπ(1), . . . , xπ(N)

)}
Confining external potential V : R3 → R: V (λx) ∼ λnV (λx), as λ→∞.

Fix some compactly supported pair potential v : R+ → R+ and define

vN (r) := N3v (Nαr) ≥ 0, α ∈ [0, 1] .

Hamiltonian of the system:

HN =
N∑
i=1

(−∆i + V (xi )) +
1

N

∑
1≤i<j≤N

vN (|xi − xj |)

1 Ground state ϕN as N →∞ and

lim
N→∞

EN

N
:= lim

N→∞

1

N
min
ψ∈HN

〈ψ,HNψ〉HN
= lim

N→∞

1

N
〈ϕN ,HNϕN〉HN

?

2 Schrödinger equation: As N →∞, what is

i∂tψ (t) = HNψ (t) , ψ (0) ∈ HN ?
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Many-Body Systems in the Hilbert-space formulation of QM Systems in the Limit of Finite Particle Numbers

Ground State of Many-Boson Systems (1957-2023)

Cf. Dyson, Lieb, Yngvason, Seiringer, Nam, Rougerie, Serfaty, Lewin, Solovej, etc.

As N →∞, the ground state energy of HN converges to

lim
N→∞

EN

N
= lim

N→∞

1

N
min
ψ∈HN

〈ψ,HNψ〉HN
= min
ϕ∈L2(R3),‖ϕ‖2=1

EGP (ϕ) = EGP (ϕGP)

with

EGP (ϕ) :=

∫
R3

{
|∇ϕ (x)|2 + V (xi ) |ϕ (x)|2 + 4πa (α) |ϕ (x)|4

}
dx

If ϕN is the ground state of HN and

γ
(1)
N =

∫
R3

|ϕN〉 〈ϕN |dx2 · · ·dxN ∈ B(L2(R3))

denotes the one-particle reduced density associated with ϕN , then

γ
(1)
N → |ϕGP〉 〈ϕGP|

The next order term of ENN
−1 is also studied (cf. Bogoliubov spectrum), etc...
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Many-Body Systems in the Hilbert-space formulation of QM Systems in the Limit of Finite Particle Numbers

Dynamics of Many-Boson Systems (1957-2023)

Cf. Dyson, Erdös, Schlein, Yau, Pickl, etc.

Let ϕN (t) be the solution of the Schrödinger equation

i∂tϕN (t) = HNϕN (t) , ϕN (0) = ϕN ∈ HN

with initial state being in the ground state of HN . Here, α = 1 and, at time t = 0,
the confining potential V is switched off.

Let

γ
(1)
N (t) =

∫
R3

|ϕN (t)〉 〈ϕN (t)| dx2 · · ·dxN ∈ B(L2(R3))

be the one-particle reduced density associated with ϕN (t). Then, for any t ≥ 0,

γ
(1)
N (t)→ |ϕGP (t)〉 〈ϕGP (t)|

with ϕGP (0) ∈ L2(R3) being the ground state of the GP functional and

i∂tϕGP (t) = −∆ϕGP (t) + 4πa (1) |ϕGP (t)|2 ϕGP (t) .

Many other results for different initial states, α ∈ [0, 1] or with V 6= 0.
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Many-Body Systems in the Hilbert-space formulation of QM General Observations

General Observations

Results for N →∞ are basically at zero temperature on “mean-field” models for
which the interaction term 1

N

∑
1≤i<j≤N vN (|xi − xj |) has a N−1 coupling constant

with often repulsive interactions (v ≥ 0).

For a system in a box Λ, one usually fixes the particle density N/ |Λ| and let
|Λ| → ∞ to get a macroscopic system (thermodynamic limit).

Previous results are for N →∞ but with either “|Λ| <∞” (confining potential) or
for |Λ| =∞ (on full space).

Many open questions: study of models with Lennard-Jones potentials
(crystallization), non-zero temperature effects, etc.

Note that semiclassical analysis is referred to as “putting quantum flesh on
classical bones,” where classical mechanics provides the skeletal framework on
which quantum quantities are constructed.

As observed by Haag in 1962 with the BCS model no reasonable microscopic
theory of first order phase transitions is possible within the Hilbert space based
approach, and the use of the algebraic setting is imperative.
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General Observations

Results for N →∞ are basically at zero temperature on “mean-field” models for
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N

∑
1≤i<j≤N vN (|xi − xj |) has a N−1 coupling constant

with often repulsive interactions (v ≥ 0).
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Algebraic Formulation of QM

Unital C∗-algebra: X ≡
(
X ,+, ·C,×,∗ , ‖·‖X

)
, that is, a Banach algebra, with a

unit 1, endowed with an involution A 7→ A∗ such that

‖A∗A‖X = ‖A‖2
X , A ∈ X .

Observables. The (real) Banach subspace of all self-adjoint elements A = A∗ ∈ X .

States. Weak∗-compact convex set of states:

E :=
⋂
A∈X

{ρ ∈ X ∗ : ρ (A∗A) ≥ 0, ρ (1) = 1}

Heisenberg picture. The dynamics is given by a strongly continuous group
τ
.

= {τt}t∈R of ∗–automorphisms generated by a symmetric derivation δ acting on
X :

∀t ∈ R : ∂tτt = τt ◦ δ = δ ◦ τt , τ0 = 1X .

Schrödinger picture: The dynamics for any initial state ρ ∈ E is given by

∀t ∈ R : ρt = ρ ◦ τt ∈ E , ρ0 = ρ ∈ E .
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Importance of the Algebraic Approach for Infinite Systems

A representation on the Hilbert space H of X is a ∗-homomorphism π from X to
B(H). Injective representations are called faithful.

By the Gelfand-Naimark theorem, each C∗-algebra has, at least, one faithful
representation: X can be identified with a C∗-subalgebra of some B(H).

For any representation π :X → B(H), one constructs another one by doubling the
Hilbert space H and the map π, via H1 ⊕H2 with H1,H2 being two copies of H.

Definition (notion of “minimal” representations)

If π : X → B(H) is a representation of X on H, we say that it is irreducible, whenever
{0} and H are the only closed subspaces of H which are invariant w.r.t. to any operator
of π(X ) ⊆ B(H).

Definition (Unitarly equivalence)

Two representations (π1,H1) and (π2,H2) of X are equivalent if there is a unitary map
U : H1 → H2 such that π1 (A) = U∗π2 (A)U for A ∈ X .
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Theorem (Rosenberg, 1953)

If a C∗-algebra X has a faithful representation on a separable Hilbert space, then its
irreducible representation is unique (up to unitary equivalence) iff X is isomorphic to
some C∗-algebra of compact operators on some Hilbert space.

The question whether all C∗-algebras with a unique (up to unitary equivalence)
irreducible representation is isomorphic to an algebra of compact operators on a
non-separable Hilbert space is known as “Naimark’s problem”. It depends on the
continuum hypothesis and not only on the axioms of the Zermelo-Fraenkel set
theory with the axiom of choice (ZFC).

Corollary

Let X be a unital C∗-algebra with faithful representation on a separable Hilbert space H.
(i) dimH <∞: Irreducible representations of X are unique, up to unitary equivalence.
(ii) dimH =∞: X has more than one unitarily non-equivalent irreducible representation.

dimH <∞ ⇒ Algebraic and Hilbert-space formulations are equivalent.

dimH =∞ ⇒ Algebraic formulation more general than the other one.
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Many-Body Problem in Fock Spaces

h is the one-particle Hilbert space. E.g., h := L2 (Ω) with Ω = Rd , Zd .

The Fock space is the Hilbert space defined by

F := C⊕
⊕
n∈N

h⊗n.

ψ ∈ F is a sequence (ψn)n≥0 of vectors. h⊗n is identified as the closed subspace of
F formed by the vectors with all components except the nth equal to zero.

Let P± : F → F be defined by

P± (f1 ⊗ · · · ⊗ fn) :=
1

n!

∑
permutation π

επ,±fπ(1) ⊗ · · · ⊗ fπ(n)

with επ,+ = 1 (bosons), επ,− = sgn (π) (fermion) is the sign of the permutation π.

Definition (Creation and annihilation operators)

For f ∈ h, we define a (f ) , a∗ (f ) : h→ F by a (f )ψ0 = 0, a∗ (f )ψ0 = f and

a (f ) f1 ⊗ · · · ⊗ fN =
√
n 〈f , f1〉h f2 ⊗ · · · ⊗ fN

a∗ (f ) f1 ⊗ · · · ⊗ fN =
√
n + 1 〈f , f1〉h f1 ⊗ f2 ⊗ · · · ⊗ fN
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Bosonic and Fermionic Fock Spaces

Note that a∗ (f ) = a (f )∗, a (f )
(
h⊗n
)
⊆ h⊗(n−1) and a∗ (f )

(
h⊗n
)
⊆ h⊗(n+1).

P+h
⊗n is n-boson Hilbert space and P−h

⊗n is the n-fermion Hilbert space. Let
F± := P±F , which is either the bosonic (+) or fermionic (−) Fock space.

Definition (Creation and annihilation operators)

∀f ∈ h, a± (f ) := P±a (f )P±, a∗± (f ) := P±a
∗ (f )P± = a± (f )∗ .

(Anti-)symmetry of functions are replaced by commutation relations between
a± (f ) , a∗± (g) for f , g ∈ h:

a± (f ) a± (g)∓ a± (g) a± (ϕ) = 0,

a∗± (f ) a± (g)∓ a± (g) a∗± (f ) = 〈g , f 〉 1F .

Bosonic case (+): a (f ) , a∗ (f ) are unbounded on F+. The above equalities (+)
are the Canonical Commutation Relations (CCR).

Fermionic case (−): a (ψ) , a∗ (f ) ∈ B(F−). The above equalities (−) are the
Canonical Anti–commutation Relations (CAR).
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The Second Quantization

If H = H∗ on h, H0 = 0 and for n ∈ N, Hn is defined on P±(h⊗n) by

HnP± (f1 ⊗ · · · ⊗ fn) := P±

(
n∑

i=1

f1 ⊗ · · · ⊗ Hnfi ⊗ · · · ⊗ fn

)

The second quantization of H is the operator defined on F± by

dΓ (H) :=
⊕
n≥0

Hn

E.g., h = L2(Ω) with Ω ⊆ Z3 and H = −∆d (discrete laplacian). Then,

Hn =
n∑

i=1

− (∆d)i and dΓ (H) =
∑
x,y∈Ω

〈δ·,y , (−∆d) δ·,x〉 a (δ·,y )∗ a (δ·,x)

In general, all families of n-body Hamiltonians can be encoded on the fermionic or
bosonic Fock spaces F± as polynomials in terms of a± (f ) , a∗± (g) for f , g ∈ h.
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Example of Fermion Systems

h is the so-called one-particle Hilbert space. For instance, h = `2
(
Zd × S

)
where S

is a finite (spin) set.

The CAR algebra
X = (CAR (h) ,+, ·, ∗)

associated with the Hilbert space h is the C∗-algebra generated by a unit 1 and a
family {a(f ) ≡ a−(f )}f∈h of elements satisfying Conditions (a)-(b):

(a) The map f 7→ a(f )∗ is (complex) linear.

(b) The family {a(f )}f∈h satisfies the CAR: For all f1, f2 ∈ h,

a(f1)a(f2) + a(f2)a(f1) = 0, a(f1)a(f2)∗ + a(f2)∗a(f1) = 〈f1, f2〉h1.

{a(f )}f∈h can be viewed as operators acting on the fermionic Fock space F
associated with h. Also, 1= 1F ∈ B(F−) and X ⊆ B(F−).
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Finite-Volume Systems

Let h = `2
(
Zd × S

)
and hL = `2 (ΛL × S) ⊆ h with ΛL

.
= {Z ∩ [−L, L]}d , L ∈ N0

and S being any finite (spin) set. Then,

CAR (hL) ⊆ CAR (h) =
⋃
L∈N

CAR (hL).

Using ax,s := a
(
δ·,(x,s)

)
we use the Hamiltonian

HL :=
∑

x,y∈ΛL,s∈S

h (|x − y |) a∗x,say,s︸ ︷︷ ︸
kinetic term

+
∑

x,y∈ΛL,s,t∈S

v (|x − y |) a∗y,tay,ta∗x,sax,s︸ ︷︷ ︸
interparticle interaction

h : R+
0 → R is the hopping term and is assumed to decay at large distances.

v : R+
0 → R is a pair potential. It is usually assumed to be fast decaying.

Equilibrium states: For any inverse temperature β ∈ R+, the Gibbs states is the
state on the finite-dimensional CAR (hL) defined by

ρL (A) :=
Trace(Ae−βHL)

Trace(e−βHL)
, A ∈ CAR (hL) .

It can be extended as a state on CAR (h).
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Thermodynamic Limit

For any inverse temperature β ∈ R+, the Gibbs states is the unique solution to a
variational problem:

PL
.

=
1

β|ΛL|
lnTrace(e−βHL) = − inf

state ρ on CAR(hL)

{
ρ (HL)

|ΛL|
− S(ρ)

β|ΛL|

}
with S(ρ) being the so-called von Neumann entropy.

In the thermodynamic limit L→∞ (→ dimension ∞), one proves [Araki-Moriya,
2003] that

P := lim
L→∞

PL = − inf
ρ∈E1

{
e (ρ)− β−1s (ρ)

}
<∞ (1)

where E1 is the weak∗ compact set of translation invariant states, e : E1 → R is
the energy density and s : E1 → R is the entropy density, defined by

e (ρ) := lim
L→∞

ρ (HL)

|ΛL|
and s (ρ) := lim

L→∞

S(ρ)

|ΛL|

e and s are weak∗ lower semicontinuous and equilibrium states are solutions to (1).

⇒ Uniqueness can be broken, cf. 1st order phase transitions, BCS model of
superconductivity (Haag, 1962).
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Example of Lattice Fermion Systems

Let h = `2
(
Zd × S

)
and hL = `2 (ΛL × S) ⊆ h with ΛL

.
= {Z ∩ [−L, L]}d and S

being any finite (spin) set. For L ∈ N0, the fermionic Fock space is

F (L)
− := C⊕

|Λ×S|⊕
n=1

{
antisymmetric ψ ∈ h⊗n

L

}
, dimF (L)

− = 2|ΛL×S|.

For L ∈ N0, let CAR (hL) ⊆ CAR (h) be the unital C∗–algebra generated by
elements {a(f )}f∈hL satisfying the CAR.

∃! faithful and irreducible representation π of CAR (h) on F (∞)
− so that

π(CAR (hL)) = B(F (L)
− ) , L ∈ N0 .

The Fock space F (∞)
− has infinite dimension and is separable ⇒ Algebraic

formulation more general than the Hilbert-space one.

One proves that

π(CAR (h)) =
⋃
L∈N0

B(F (L)
− )  B(F (∞)

− )

and the state space of π(CAR (h)) is strictly larger than the one of B(F (∞)
− ).
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In infinite volume, we study the variational problem

inf
ρ∈E1

F (ρ) ≤ inf
ρ∈E1:ρ◦π extends to a state on B(F(∞)

− )

F (ρ)

with F := e − β−1s. Here, E1 is the weak∗ compact convex set of translation
invariant states, e : E1 → R is the energy density and s : E1 → R is the entropy
density.

The set of equilibrium states is defined by

M := {ω ∈ E1 : F (ω) = inf F (E1)} 6= ∅

GNS: For each ω ∈ M, there is a unique (up to a unitary transformation) cyclic
representation (πω,Hω,Ωω) such that

ω(A) = 〈Ωω, πω(A)Ωω〉Hω , A ∈ CAR (h) .

(πω,Hω) is not necessarily unitarly equivalent to (π,F (∞)
− ), in particular if

inf
ρ∈E1

F (ρ) < inf
ρ∈E1:ρ◦π extends to a state on B(F(∞)

− )

F (ρ)
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