9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMA2024) June 3-7, 2024, Lisbon, Portugal

Bridging Machine Learning and Physics: Advancements in Continuum Mechanics and Transport Phenomena

TRACK NUMBER 1800

M. GISELLE FERNÁNDEZ-GODINO^{*}, DANIEL O'MALLEY[†], CHRISTIAN GOGU[§], AND GEORGE E. KARNIADAKIS[‡]

* Lawrence Livermore National Laboratory 7000 East Ave, Livermore, CA 94550 fernandez48@llnl.gov, <u>webpage</u>

[†]Los Alamos National Laboratory Los Alamos, NM 87544 omalled@lanl.gov, <u>webpage</u>

[§] Université de Toulouse, ISAE-SUPAERO, CNRS, UPS, INSA, Mines Albi, Institut Clément Ader 3 rue Caroline Aigle, Toulouse F-31400, France christian.gogu@gmail.com, webpage

> [‡]Brown University Providence RI 02912 george_karniadakis@brown.edu, <u>webpage</u>

Key words: Deep Learning, Machine Learning, Convolutional Neural Networks, Solid Mechanics, Fluid Mechanics, Transport Phenomena.

ABSTRACT

Machine Learning has demonstrated transformative potential in diverse scientific fields, with deep learning standing out for its exceptional performance [1]. However, the *black-box* nature of these deep learning models has raised concerns about their lack of physical interpretability.

In an endeavor to bridge this interpretability gap, sophisticated methodologies such as Physics-Informed Neural Networks (PINNs) [2], DeepONet [3], symbolic regression [4], Scientific Machine Learning (Sci-ML) [5], and differentiable programming [6] are an attempt to solve this issue. This symposium seeks to bring together experts for an in-depth discussion on approaches that integrate domain-specific physical laws and principles directly into machine learning algorithms, thereby fostering a more interpretable and reliable modeling framework.

REFERENCES

[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[2] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707. [3] Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(5), 389-405.

[4] Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differential equations. *Science advances*, *3*(4), e1602614.

[5] Raissi, M., Yazdani, A., & Karniadakis, G. E. (2020). Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations. Science, 367(6481), 1026-1030.

[6] Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V.B. and Tebbutt, W., 2019. A differentiable programming system to bridge machine learning and scientific computing. *arXiv preprint arXiv:1907.07587*.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Institutional release number LLNL-PROC-854416.