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ABSTRACT 

Machine Learning has demonstrated transformative potential in diverse scientific fields, with 

deep learning standing out for its exceptional performance [1]. However, the black-box nature 

of these deep learning models has raised concerns about their lack of physical interpretability.  

In an endeavor to bridge this interpretability gap, sophisticated methodologies such as Physics-

Informed Neural Networks (PINNs) [2], DeepONet [3], symbolic regression [4], Scientific 

Machine Learning (Sci-ML) [5], and differentiable programming [6] are an attempt to solve 

this issue. This symposium seeks to bring together experts for an in-depth discussion on 

approaches that integrate domain-specific physical laws and principles directly into machine 

learning algorithms, thereby fostering a more interpretable and reliable modeling framework. 
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