ROBUST DISCRETIZATION AND SOLUTION OF COUPLED PROBLEMS IN POROUS MEDIA

TRACK NUMBER 100

FLEURIANNE BERTRAND^{*}, AND JAKUB W. BOTH[†]

*Chemnitz University of Technology Reichenhainer Straße 41, 09126 Chemnitz, Germany fleurianne.bertrand@mathematik.tu-chemnitz.de [†]University of Bergen Allegaten 41, 5007 Bergen, Norway Jakub.both@uib.no

Key words: coupled problems, porous media, poromechanics, discretization, mixed FEM

ABSTRACT

Porous media applications often face the challenge of the presence of multiple scales in space and time as well complex geometries. These have a direct impact on discretization and solution strategies, for coupled problems introducing a range of different and potentially dynamically changing problem characteristics (see [1] for a review of current challenges). With applications in mind ranging from geological carbon storage to perfusion of biological tissue, both accurate, robust, and efficient numerical methods are highly desirable. A particular focus of this session lies reliable and efficient a posteriori error estimates (e.g. [1]) and parameter robust approximation and preconditioning (e.g. [2]) and robust and efficient iterative decoupling (e.g. [3]).

REFERENCES

- [1] F. Bertrand, A. Ern, F. Radu, Robust and reliable finite element methods in poromechanics, Comput. Math. Appl., 91 (2021)
- [2] F. Bertrand, G. Starke, A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem, Computers&Mathematics with Applications, 2021.
- [3] J.J. Lee, K.-A. Mardal, R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput. 39 (2017)