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ABSTRACT 

Nowadays, high-performance and relatively inexpensive hardware components are capable of 

supporting advanced Structural Health Monitoring (SHM) paradigms, enabling large scale 

continuous acquisition of several sensor types with high and distinct sampling rates. However, 

the volume of the produced datasets grows in size and complexity, making them unmanageable 

with traditional approaches [1]. Machine learning (ML) allows dealing with large amounts of 

data and ensures learning from them, even when no prior knowledge of the investigated 

phenomena is available, alleviating the practical shortcomings linked to complex physics-based 

models [2-4]. However, purely data-driven approaches can mostly learn and predict behavioural 

patterns that were somehow experienced or simply provide evidence of deviations from 

baseline conditions. Thus, they require training on data that are representative across a broad 

range of possible environmental and operational conditions, are prone to overfitting and poorly 

generalise to out-of-sample scenarios [2,5]. Furthermore, they are, by construction, less 

interpretable than physics-based models, which, despite their limitations, allow for a more 

transparent understanding of the relationships between variables and the reasoning behind the 

applied inference.  

The integration of physics-based modelling, which is more intuitive for engineers, with ML 

techniques allows for the combination of the advantages of data-driven methods with the 

insights delivered by physics-based principles. This ensures an enhanced learning and 

predictive capability, particularly when training data are limited, by leveraging domain-specific 

knowledge [2,5]. Various degrees of combination can be pursued within hybrid architectures 
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(e.g. surrogate models, residual models, constrained ML, etc.), depending on the specific 

characteristics and objectives of the application [2,3,6,7]. 

The scope of this mini-symposium is to present advancements and emerging trends in physics-

informed SHM, discussing open challenges and promising solutions to tackle them. It aims to 

constitute a platform for the exchange of ideas and experiences and foster more coordinated 

and interdisciplinary research on the wide spectrum of modelling strategies to enforce physical 

laws or constraints within the learning process.  

We welcome contributions on the integration of physics-based with data-driven approaches 

focused on, but not limited to:  

• Advanced Bayesian approaches for the fusion of SHM and non-destructive evaluation 

data. 

• Empowering model-based SHM approaches with surrogate models. 

• Leveraging digital twins to enhance SHM strategies. 

• Network-level SHM using transfer learning techniques. 

• Cutting-edge methods for computation-physical domain adaptation in SHM. 

• Integrating physics and ML for enhanced SHM. 
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