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Course plan

• Day 1: Introduction, GPU hardware, OpenCL concepts

• Day 2: OpenCL API, OpenCL C language

• Day 3: Optimizing algorithms for GPU architecture

• Day 4: Practical usage of OpenCL

• Day 5: Open discussion
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Introduction

• In this course, you will learn on how to start leveraging the 
computational power of GPUs in your number crunching 
code!

• Please ask your questions whenever you want

• This presentation as well as all code sample will be found 
after the finishing, at http://yon.ir/OpenCL
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Prerequisites

• I assume you…

• are familiar with the C/C++ programming; do not panic! Basic 
C/C++ syntax is enough

• know some basic concepts about the computer’s hardware; CPU, 
RAM, registers, etc., however, we can discuss these a bit if you have 
problems

• have access to a Windows/Linux/Mac system equipped with a 
supported GPU and needed software, in case you want to try the 
example codes or develop your own; I can help you install the 
required software on your laptop

• are motivated to learn new things (just like me!)
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References and further reading

• The OpenCL standard

• The specifications for OpenCL API and OpenCL C language

• Guides from AMD, NVIDIA, Intel, etc.

• There are several guides available from each vendor; the most 
important one will be the Code Optimization guide

• Many books are available on OpenCL programming
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Parallelism

• Engineers and scientists face more and more complex 
problems, which need huge computational resources

• In the early days of CPUs, newer CPUs usually had a higher 
clock frequency than their old counterparts; i.e. they 
(among the other things) worked at a higher speed

• Soon CPUs approached the physical limit on the clock 
frequency (somewhere between 3 and 4 GHz), so they 
started to perform multiple instructions in each cycle, i.e. 
instruction level parallelism (ILP)

10



Parallelism (cont’d)

• ILP was not enough for all needs, so other types of 
parallelism came into play

• Task level parallelism (TLP) or multiple instruction multiple data 
(MIMD)

• Data parallelism or single instruction multiple data (SIMD)

• CPUs became equipped with multiple cores to handle 
simultaneous jobs (TLP)

• CPUs also tried to do similar calculations on different data 
using their SIMD units to speed up calculations
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The history of GPUs

• GPU stands for Graphics Processing Unit, and is the 
counterpart of your Central Processing Unit (CPU) on your 
graphics card

• GPUs were designed to accelerate the graphics 
operations, so CPU could offload such (heavy) tasks to 
them, performing other tasks

• Thanks to the gaming industry (!), GPUs have enjoyed 
heavy development over the last years, and gained 
computational capabilities several times more than CPUs 
released at the same time
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The history of GPUs (cont’d)

• Some scientists tried to leverage this high potential, but 
there was a big problem: GPUs, unsurprisingly, were 
deigned for graphics operations and not general 
computing, so scientists had to cast their calculations in 
terms of graphics operations and use graphics libraries like 
OpenGL

• This was neither easy, nor always possible, hence, due to 
the demand, the era of GPGPU began

• GPGPU stands for general processing on GPUs
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The history of GPUs (cont’d)

• GPU vendors started to make their graphics pipelines 
programmable, i.e. programmers could write a simple 
program, called shader, to be run on the GPU

• This was the starting point for more sophisticated GPU 
programming frameworks

• The major step forward in this regards was the introduction 
of NVIDIA’s CUDA in 2008

• CUDA (used to) stands for Compute Unified Device 
Architecture
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The history of GPUs (cont’d)

• CUDA offered a free generic programming framework in 
C/C++ language

• CUDA attracted many researchers and practitioners to use 
the huge computational power of millions of already 
available NVIDIA GPUs

• CUDA ecosystem started to mature rapidly; CUDA is at 
version 10.1 now, and several libraries based on it have 
been developed and used by scientific codes and 
commercial programs
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The history of GPUs (cont’d)

• CUDA has a major drawback: vendor lock, i.e. it is only 
available of NVIDIA GPUs, so the codes developed using it 
can only be run only on NVIDIA GPUs

• Almost a year after introduction of CUDA, a consortium of 
several industry giants, lead by Apple, started to work on 
the draft of a royalty-free, open standard for 
heterogeneous computing, named OpenCL

• OpenCL stands for Open Computing Language
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The history of GPUs (cont’d)

• OpenCL is adopted by many companies, and conformant 
implementations are available from Altera, AMD, Apple, 
ARM, Creative, IBM, Imagination, Intel, NVIDIA, Qualcomm, 
Samsung, Vivante, Xilinx, and ZiiLABS [Wikipedia]

• As you may notice, not all of the above companies build 
GPUs; OpenCL is not limited to GPUs, and can be used on 
a vast range of technologies, including (multi-core) CPUs, 
GPUs, DSPs, FPGAs, and other accelerators [Wikipedia]
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The history of GPUs (cont’d)

• Codes written in compliance with OpenCL standard can 
be compiled on all conformant platforms, though there 
remains the problem of performance-portability which is 
still an open topic

• You can use OpenCL on your phone! Interesting!

20



GPU hardware

• The hardware of today’s GPUs is much more complex than 
that of CPUs

• Modern GPUs use parallelism mostly in form of SIMD, i.e. 
they perform well when they are asked to perform the 
same set of instructions on a large volume of data

• GPUs are comprised, among the other things, a set of 
multi-processor units

• Each multi-processor has several processor units, which 
operate on different data in parallel
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GPU hardware (cont’d)

• You may have heard of the term core or (CUDA core) in 
the GPU specifications; this is the total number of the 
processor units in the GPU

• A core in a GPU has much less computational power than 
that of a CPU

• Instead, today’s modern GPUs offer thousands of these 
cores, hence the name many-core processors, in contrast 
to multi-core CPUs
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GPU hardware (cont’d)

• From NVIDIA K80 GPU specifications:

© NVIDIA
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GPU hardware (cont’d)

• The very high number of cores requires a very complex 
design, so that the computational power scales with the 
number of cores

• Additionally, a different programming model is required to 
take advantage of this hardware

• The complexity of the hardware mostly comes from the 
memory hierarchy available in GPUs

• Each memory type has different characteristics and use 
cases
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I hope you still follow me!

© giphy.com
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OpenCL concepts

• Host: The computer with the compute devices

• Platform: An implementation of OpenCL running on the 
host; there might be several platforms available on a single 
host

• Context: The communication channel between your code 
and the OpenCL platform

• Device: The compute device
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OpenCL concepts (cont’d)

• Kernel: A function executed on the device

• Program: A set of kernels, usually compiled from source 
using the OpenCL run-time compiler

• Command queue: A queue of the commands, sent by 
your code, to be executed on the device

• Buffer: A linear set of bytes allocated on the device’s 
memory

• …
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OpenCL execution model

• As mentioned earlier, GPUs need a different programming 
model to take advantage of thousands of cores

• This is due to the fact that GPUs (as well as many other 
accelerators) have a different execution model
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OpenCL execution model (cont’d)

• In the simplest form, instead of running the code inside a 
for loop for N times, you put the code inside a kernel

• Then, you ask the OpenCL scheduler to run the kernel 
using N threads

• A thread can be defined as a path of execution

• Each thread will run on a single core of the GPU, 
effectively running one step of the original for loop
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OpenCL execution model (cont’d)

• The number of hardware cores on the GPU, though much 
more than that of CPUs, is limited to a few thousands in 
recent GPUs

• We may need to run the kernel millions of times

• Solution: The OpenCL scheduler divides the total work 
items into a series of workgroups

• The cores in a workgroup run the same kernel instructions 
on a multi-processor unit
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OpenCL execution model (cont’d)

• The execution continues until the kernel reaches, for 
example, a global memory read/write request

• As this operation is very time-consuming (it can take 
600~700 GPU cycles to complete), the scheduler stalls the 
current workgroup, and allocates a new one, until the 
memory operation is completed
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OpenCL execution model (cont’d)

• Even this newly allocated workgroup may encounter a 
memory operation, even before the last one is completed

• In this case, the scheduler allocates a third workgroup

• This process continues until the first memory transaction is 
completed

• After completion of the memory transaction, the scheduler 
re-allocates the corresponding workgroup, and the 
execution continues from were it was stalled
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OpenCL execution model (cont’d)

• Consider a simple code for addition of two vectors 
defined as follows

const double *a;

const double *b;

double *c;

const int N = ...;  // ‘N’ is the size of the vectors
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OpenCL execution model (cont’d)

• Serial CPU version

for (int i = 0; i < N; i++)

{

c[i] = a[i] + b[i];

}

• The order of execution of inner code is deterministic

36



OpenCL execution model (cont’d)

• Parallel CPU version using OpenMP

#pragma omp parallel for

for (int i = 0; i < N; i++)

{

c[i] = a[i] + b[i];

}

• Equivalent to running part of the above loop on each core

• The inner code for different values of i should be independent

• Race conditions can easily occur
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OpenCL execution model (cont’d)

• Parallel GPU version using OpenCL

i = get_global_id(0);

if (i < N)

{

c[i] = a[i] + b[i];

}

• Ask the scheduler to run the above code using N threads

• The order of execution of the workgroups is non-deterministic

• We must take care of Race Conditions here, too
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OpenCL execution model (cont’d)

• This complicated execution model is designed to hide 
memory latency, the main bottleneck of GPGPU

• CPUs try to use cache to this end

• There is a cache hierarchy (L1, L2, L3) in CPUs
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OpenCL execution model (cont’d)

• In GPUs usually there is no cache memory, hence the 
described process is used hide the memory latency

• There are some side effects

• There must be enough threads to saturate the GPU, otherwise 
scheduler will not be able to hide the memory latency

• Coalesced memory access and bank conflict in memory access is 
very important; if consecutive memory addresses are requested by 
threads in a workgroup, the memory controller can fulfill the request 
much faster; in contrast, if the memory pieces requested are from 
different memory banks, the transaction takes much longer
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OpenCL execution model (cont’d)

• The details of coalesced memory access and bank 
conflict is beyond the scope of this course

• Please note that the above issue is also hardware 
dependent; so, you need to consider this for a high-
performance code
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OpenCL execution model (cont’d)

• The division of work items into workgroups may be easier to 
do in 1, 2 or 3 dimensions,  due to nature of the problem

• This is called a ND Range in OpenCL terminology

• What we just discussed was a 1D division
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OpenCL execution model (cont’d)

• Consequences of the GPU execution model

• GPUs are not suitable for small workloads, as the overheads will be 
more pronounced

• Every memory access in the code should be done with care; too 
many memory accesses will have a negative effect on your code’s 
performance

• The algorithm must be modified, as much as possible, to avoid 
irregular memory access to boost the performance of the code
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OpenCL API

• OpenCL can be divided into two major parts:

• OpenCL API, callable from host, which allow you query for available 
platforms, devices, etc., compile and run kernels and more

• OpenCL C, the language used inside kernels and used for doing the 
calculations; it also exposes several utility and math functions

• We will be discussing OpenCL API’s C interface, as it is the 
officially supported one

• Detailed information about the API can be found in 
OpenCL specifications; keep it handy when coding!
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OpenCL API (cont’d)

• OK, enough intro! Let’s jump in and get our feet wet!

• If you want to follow the code samples, make sure you 
have installed your GPU’s OpenCL SDK

• NVIDIA: Install NVIDIA CUDA Toolkit:

• https://developer.nvidia.com/cuda-downloads

• AMD: For Linux, installing the latest driver for your GPU with --opencl
option will install all you need; in case of Windows, install the latest 
driver and use OpenCL SDK light for headers and libraries:

• https://www.amd.com/en/support

• https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases

46



OpenCL API (cont’d)

• We will only briefly review the most important functions in 
OpenCL API. For details, error codes, etc., please refer to 
OpenCL specifications.

• Start by including the OpenCL’s header file:

#include <CL/cl.h>

• On Mac OS systems, you should use this form instead

#include <OpenCL/cl.h>
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OpenCL API (cont’d)

• First of all, we ask for the available platforms, using 
clGetPlatformIDs and get information about them using
clGetPlatformInfo
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OpenCL API (cont’d)

• After the selection of the platform, now we may query 
available devices using clGetDeviceIDs and get 
information about them using clGetDeviceInfo; there are 
several items you can get information about
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OpenCL API (cont’d)

• The next important step is creating a context. An OpenCL 
context is created with one or more devices using 
clCreateContext:
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OpenCL API (cont’d)

• The functions with clCreate prefix have corresponding 
clRetain and clRelease counterparts to increase the 
reference count or release of the object, in this case 
clRetainContext and clReleaseContext:
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OpenCL API (cont’d)

• A command queue needs to be created for each device 
in the context, so the code can communicate with the 
device and send commands to it. This is done using 
clCreateCommandQueue (deprecated in OpenCL 2.0) or 
clCreateCommandQueueWithProperties:
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OpenCL API (cont’d)

• The next important thing is the buffer objects, used to store 
data on the device. A buffer object can be created using 
clCreateBuffer:

• Several flags can be passed to this function; they may be 
used to allocate pinned host memory for faster data 
transfers between the host and devices
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OpenCL API (cont’d)

• Buffers can be divided into sub-buffers using the 
clCreateSubBuffer function; it can boost the performance 
when the code reads or writes to a part of the buffer in a 
kernel and uses the whole in another
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OpenCL API (cont’d)

• Data transfers between the host and the device can be 
done via buffers. There are flags for asynchronous 
operations. clEnqueueReadBuffer and 
clEnqueueReadBufferRect are the functions used to read 
from buffers…
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OpenCL API (cont’d)

• …while clEnqueueWriteBuffer and 
clEnqueueWriteBufferRect do the reverse.
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OpenCL API (cont’d)

• For completeness, there are functions to copy data 
between the buffers, clEnqueueCopyBuffer and 
clEnqueueCopyBufferRect…
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OpenCL API (cont’d)

• …as well as a functions to fill the buffers, 
clEnqueueFillBuffer:
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OpenCL API (cont’d)

• Buffers can be mapped into host address space using 
clEnqueueMapBuffer:
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OpenCL API (cont’d)

• It should be noted that while mapping buffers seems like a 
very convenient way to copy data to a buffer, it is not 
exempt from the restrictions that we shall review later; i.e. 
each read or write to the mapped region will trigger a 
read or write via PCIe (with the usual overheads) and it 
maybe much better if such read/writes are combined into 
a single one, if possible.
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OpenCL API (cont’d)

• Similar to buffers that are usually used to store data, there 
are also image objects in OpenCL. Image objects are 
usually used for storing visual data (or computational data 
to be visualized) with interoperation of OpenCL and 
graphics libraries, such as OpenGL or DirectX.

• Images can have other uses as well, such as hardware 
interpolation/clamping as well as cache-like mechanism 
for reading data.

• There are functions to read, write and copy data between 
host and device images, and buffers.
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OpenCL API (cont’d)

• OpenCL programs contain one or more kernels. The 
kernels are usually compiled from source in OpenCL using 
clCreateProgramWithSource; please note while this can 
help the compiler generate an optimized code for the 
device, it may be a drawback for commercial/closed 
source program.
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OpenCL API (cont’d)

• After creation of a program, it should be compiled (built) 
using clBuildProgram. Command line options can be 
passed to the compiler. Among the most useful ones is the 
-D option for defining macros which can help building a 
rather general kernel for a specific purpose or for 
parameter tuning. Other useful ones may be how the 
code deals with numerical accuracy, optimization, etc.
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OpenCL API (cont’d)

• Kernel objects need to be created once a program is built, 
so they can be called from host. A kernel object, not so 
surprisingly, is built using clCreateKernel.
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OpenCL API (cont’d)

• As you remember, a kernel is a function intended to run on 
the device. A kernel is a void function, as we will see later, 
but may accept arguments. These arguments are set using 
clSetKernelArg function:
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OpenCL API (cont’d)

• Kernels can be queued for execution using 
clEnqueueNDRangeKernel function. It is worth noting the 
error reported by this function is just about queuing the 
kernel, and not its execution (which is an asynchronous 
operation,  by the way). You’ll need to check for possible 
runtime errors later.
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OpenCL API (cont’d)

• Command queues can be flushed using clFlush function 
to ensure that the command are sent to the appropriate 
device. To make sure all the command are finished 
execution, one may use clFinish instead. Never call these 
functions (especially the latter, which is a blocking 
function) if your has not yet reached a synchronization 
point. clFinish can also be used to check for runtime 
errors when running kernels.
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OpenCL C language

• OpenCL C language is used to write kernels. It is a subset 
of C99 with some additions / restrictions for OpenCL 
kernels. If you know basic C/C++, you should be OK to go.

• A kernel is identified by the __kernel prefix (note the two 
underscores):

__kernel void first_kernel(

__global double *a,

const int N)

{ … }
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OpenCL C language (cont’d)

• The following is the basic set of scalar data types available:

• bool

• char, unsigned char, uchar

• short, unsigned short, ushort

• int, unsigned int, uint

• long, unsigned log, ulong

• float, double, half

• …
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OpenCL C language (cont’d)

• Each internal type has a representative type in host side; 
remember we will be reading and writing data from 
devices; all these type will have a cl prefix:

• cl_char, cl_uchar

• cl_short, cl_ushort

• cl_int, cl_uint

• cl_long, cl_ulong

• cl_float, cl_double, cl_half
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OpenCL C language (cont’d)

• There are also vector data types available; n can be 2, 3, 
4, 8 or 16:

• charn, ucharn

• shortn, ushortn

• intn, uintn

• longn, ulongn

• floatn, doublen

• Please note that, old GPUs do not support double and 
doublen data types. Also, you need to explicitly enable 
their support to use them.
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OpenCL C language (cont’d)

• Vector data types help vectorizing your code to gain more 
speed up. Use vector data types where possible.

• For n other than 3, a  data  item  declared  to  be  a  data  
type  in  memory  is  always  aligned  to  the  size  of  the  
data  type  in bytes. For example, a float4 variable will be 
aligned to a 16-byte boundary, a char2 variable will be 
aligned to a 2-byte boundary. For n equal to 3, the size is 
taken to be as the case n = 4;
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OpenCL C language (cont’d)

• A built-in data type that is not a power of two bytes in size 
must be aligned to the next larger power of two. This rule 
applies to built-in types only, not structs or unions.

• Vector literals can be used to create vectors from a list of 
scalars, vectors or a mixture thereof. A vector literal can be 
used either as a vector initializer or as a primary expression:

(float4) (1.0f, 2.0f, 3.0f, 4.0f)

(float4) (some_float_2, some_other_float_2)

(float4) (0.0f, some_float_3)
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OpenCL C language (cont’d)

• Vector data types with 2, 3 and 4 elements support any 
combination of meaningful x, y, z and w accessors:

float4 a4 = (float4) (1.0f, 2.0f, 3.0f, 4.0f);

a4.x = 3.0f;

float2 a2 = a4.xy;

float2 b2 = a4.xw;

float4 b4 = b2.xyyx;
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OpenCL C language (cont’d)

• Vector data types may be used with numerical indices, 
too; The numeric indices must be preceded by the letter s
or S.
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OpenCL C language (cont’d)

• It is forbidden to ask for the address of a component of a 
vector variable:

float8 a;

float *b = &a.x; // Illegal, won’t compile!
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OpenCL C language (cont’d)

• Vector operations are component-wise:

float4 a;

float b;

float4 c = a + b;

• The components of c will be equal to sum of the 
corresponding component in a plus b.
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OpenCL C language (cont’d)

• Address spaces in OpenCL C

• As discussed earlier, there are different types of memory in 
GPUs, so it should be logical for the compiler to know 
which type of memory a pointer points to

• The following address space qualifiers are defined:

__global, __constant, __local, and __private

• They point to global, constant, shared and private type of 
memory, respectively. Address spaces are very important 
when passing arguments to a kernel, for example
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OpenCL C language (cont’d)

• Here is an example:

// Declare a pointer p in the global address space that

// points to an object in the global address space

__global int *p;

void f(...) {

// Declares an array in the private address space

float x[4];

}
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OpenCL C language (cont’d)

• Kernel arguments declared to be a pointer or an array of a 
type must point to one of the named address spaces 
__global, __local or __constant

• A pointer to address space A can only be assigned to a 
pointer to the same address space A

• Casting a pointer to address space A to a pointer to 
address space is B illegal if A is not the same as B
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OpenCL C language (cont’d)

• The __global or global address space name is used to 
refer to memory objects (buffer or image objects) 
allocated from the global memory pool

• A buffer memory object can be declared as a pointer to a 
scalar, vector or user-defined struct; this allows the kernel 
to read and/or write any location in the buffer

• The const qualifier can also be used with the __global
qualifier to specify a read-only buffer memory object; the 
access type to a buffer is specified when creating the 
buffer
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OpenCL C language (cont’d)

• Example:

global float4 *color; // An array of float4 elements

typedef struct {

float a[3];

int b[2];

} foo_t;

global foo_t *my_info; // An array of foo_t elements
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OpenCL C language (cont’d)

• The __local address space is used to describe variables 
that need to be allocated in local memory and are shared 
by all work-items of a work-group

• Pointers to the __local address space are allowed as 
arguments to functions (including kernels)

• Variables declared in the __local address space inside a 
kernel must occur at kernel scope
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OpenCL C language (cont’d)

• Example:

kernel void my_kernel(...) {

local float a;

local float b[10];

if (...)

{

local float c; // Not allowed!

}

}
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OpenCL C language (cont’d)

• Variables allocated in the __local address space inside a 
kernel function are allocated for each work-group 
executing the kernel and exist only for the lifetime of the 
work-group executing the kernel

• These variables are usually used by the threads in a 
workgroup to cooperate and boost the performance of 
the kernel
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OpenCL C language (cont’d)

• Variables inside a kernel function not declared with an 
address space qualifier, all variables inside non-kernel 
functions, and all function arguments are in the __private
or private address space
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OpenCL C language (cont’d)

• There are a series of attributes which can be defined for 
functions; these attributes can be very useful for some kind 
of optimizations that can be done on kernels or giving hints 
to the compiler. For example, 
__attribute__((work_group_size_hint(X, Y, Z))) is a 
hint to the compiler and is intended to specify the work-
group size that may be used as arguments to 
clEnqueueNDRangeKernel

• On the other hand, 
__attribute__((reqd_work_group_size(X, Y, Z))) is the 
work-group size that must be used with the kernel
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OpenCL C language (cont’d)

• There are attributes for giving hint to the compiler how 
unroll the loops, for example: 
__attribute__((opencl_unroll_hint(2)))

while (*s != 0) *p++ = *s++;

• The above code will tell the compiler to unroll the loop with 
a factor or 2

• Specifying 1 as the unroll loop hint means that the loop 
should not be unrolled
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OpenCL C language (cont’d)

• There is a long list of restrictions in OpenCL C due to its 
nature. For example, recursion is not allowed, or you 
cannot ask for a pointer to a function. You may refer to 
Section 6.9 of the OpenCL C specifications for more 
information.
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OpenCL C language (cont’d)

• OpenCL compiler supports preprocessing; other than the 
usual use case, it can be used to enable / disable some 
features (extensions in OpenCL terminology) or change 
the behavior of the code. For example, to enable double 
data type, one needs to have the following statement in 
the code:

#pragma OPENCL EXTENSION cl_khr_fp64: enable

• A more complete version, taking into account older AMD 
devices is shown in the next slide
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OpenCL C language (cont’d)

#ifdef cl_khr_fp64

#pragma OPENCL EXTENSION cl_khr_fp64: enable

#else

#ifdef cl_amd_fp64

#pragma OPENCL EXTENSION cl_amd_fp64: enable

#else

#error “Cannot enable FP64 on this device."

#endif

#endif
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OpenCL C language (cont’d)

• Built-in functions

• There are a lot of built-in functions in OpenCL C that helps 
the programmer to get the necessary information (such as 
the thread ID) or reduce the amount of the code 
necessary to perform the operation of interest, as well as 
accelerating the code
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OpenCL C language (cont’d)

• Work-item related functions:

get_work_dim, get_global_size, get_global_id, get_local_size, 
get_local_id, get_num_groups, get_group_id, get_global_offset, 
get_global_linear_id, get_local_linear_id

• Math functions

• Constants and Macros

• General functions

• Geometric functions

93



OpenCL C language (cont’d)

• Vector data load and store functions

• Synchronization Functions

• Atomic functions

• printf

• …
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Code optimization

• Minimize host-device data transfer; data is transferred via 
PCIe bus, which has limited bandwidth

• Host-device data transfer is done via DMA (direct memory 
access), i.e. without CPU intervention; so you may do other 
useful work while data transfers are in progress

• Kernel execution is also done on GPU without CPU 
intervention; so when the work is offloaded to GPU, you 
may do other things on CPU
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Code optimization (cont’d)

• Re-order your calculations inside your kernel, when 
possible, to use the result of last calculated value 
immediately; GPUs usually can optimize the use of registers

• Fuse small kernels, i.e. merge kernels when possible to 
avoid kernel launch overhead

• Profile your code using GPU profilers when available; 
check GPU occupancy, memory throughput, kernel 
register usage, etc. to find the bottlenecks of your code. If 
your kernel uses too much registers, you may try re-working 
it or breaking it into parts
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Code optimization (cont’d)

• Use asynchronous version of command when possible, and 
check for their completion only when you need the results; 
do other tasks while these command are being run

• Not all algorithms can benefit from such optimizations; try 
to rework your algorithm to use them, if possible

• Minimize barriers; use them only when they are needed

• Set only changed kernel parameters; others are kept 
between launces
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Code optimization (cont’d)

• Use local memory when possible

• Pass constants / parameters as macros on OpenCL 
compiler’s command line when possible, so the compiler 
can generate an optimized code

• Try auto-tuning (runtime tuning), when you are going to 
call your kernels a lot of times and there are some tunable 
parameters
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Thank you!

Happy coding!
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