
Introduction to OpenMP

OpenMP
What is it?

An Application Program Interface (API) that may be used to explicitly direct multi-
threaded, shared memory parallelism

Jointly defined and endorsed by a group of major computer hardware and software
vendors www.openmp.org

It is based on:

• Compiler Directives #pragma omp parallel

• Runtime Library Routines: libomp

• Environment Variables: OMP_NUM_THREADS=4

http://www.openmp.org/

OpenMP
The main idea

Programming model based on relaxed memory consistency

• Each thread is allowed (temporarily) to have a slightly different view of the memory.

• memory is synchronized only at some points in the program, as prescribed by users through
directives.

This implies:

• Allows writing very efficient programs

• The order in which instructions are executed is non-deterministic

• Difficult to debug and to reproduce bugs in a multithreaded program

OpenMP
Typical use case

Parallelizing the loops by splitting them between threads using #pragma:

Please note that:

• The loop body is independent for each value of i

• Data management is needed when we have interdependency of data

• #pragma is ignored if not recognized. So we can compile a serial code easily

for(int i=0; i<size; i++)
A[i]=B[i]+C[i];

#pragma omp parallel for
for(int i=0; i<size; i++)

A[i]=B[i]+C[i];

OpenMP
How it works?

Parallelizing the loops by splitting them between threads using

• Single Program Multiple Data (SPMD) paradigm

• Fork and Join mechanism

std::cout << "Start sum" << std::endl;
int size = 1000;

#pragma omp parallel for
for(int i=0; i<size; i++)

A[i]=B[i]+C[i];

std::cout << "Sum finished!" << std::endl;

for(int i=0; i<500; i++)
A[i]=B[i]+C[i];

for(int i=501; i<1000; i++)
A[i]=B[i]+C[i];

Serial

Fork

Join
Serial

Parallel

OpenMP
How it works?

The fork and join has its own overhead. So:

• To reduce them we should choose the most time consuming loops to parallelize

• In case of several small loops put them all in one parallel region

std::cout << "Start sum" << std::endl;
int size1 = 100;

#pragma omp parallel{
#pragma omp for
for(int i=0; i<size1; i++)

A[i]=B[i]+C[i];
int size2=200
#pragma omp for
for(int i=0; i<size2; i++)

D[i]=3.2*E[i];
}

std::cout << "Sum finished!" << std::endl;

for(int i=0; i<50; i++)
A[i]=B[i]+C[i];

int size2=200
for(int i=0; i<100; i++)

D[i]=3.2*E[i];

for(int i=51; i<100; i++)
A[i]=B[i]+C[i];

int size2=200
for(int i=101; i<200; i++)

D[i]=3.2*E[i];

Serial Fork

JoinSerial

Parallel

Parallel loops
Scheduling

OpenMP provides different scheduling for parallel loops:

• static Loop iterations are divided into pieces of size chunk and each thread
takes equal number of them. If chunk is not specified, the iterations are evenly
(if possible) divided contiguously among the threads.

#pragma omp parallel for schedule(static)
for(int i=0; i<900; i++)

A[i]=B[i]+C[i];

#pragma omp parallel for schedule(static,200)
for(int i=0; i<900; i++)

A[i]=B[i]+C[i];

th0 th1 th2 th3

225 225 225 225

th0 th1 th2 th3

200 200 200 200

th0

100

Parallel loops
Scheduling

OpenMP provides different scheduling for parallel loops:

• static Loop iterations are divided into pieces of size chunk and each thread
takes equal number of them. If chunk is not specified, the iterations are evenly
(if possible) divided contiguously among the threads.

• dynamic Loop iterations are divided into pieces of size chunk and at runtime
each thread takes the next one in the queue until there are no chunk available.
The default chunk size in this case is 1.

#pragma omp parallel for dynamic(static,200)
for(int i=0; i<900; i++)

A[i]=B[i]+C[i]; th3 th0 Th2 th3

200 200 200 200

th1

100

Parallel loops
Scheduling

OpenMP provides different scheduling for parallel loops:

• static Loop iterations are divided into pieces of size chunk and each thread
takes equal number of them. If chunk is not specified, the iterations are evenly
(if possible) divided contiguously among the threads.

• dynamic Loop iterations are divided into pieces of size chunk and at runtime
each thread takes the next one in the queue until there are no chunk available.
The default chunk size in this case is 1.

• guided Loop iterations starts with large block and reduced to the chunk size
depending to the thread load

• automatic selected by compiler, environment, etc…

Data Management
Shared & private variables

int size = 1000;

#pragma omp parallel for
for(int i=0; i<size; i++)

A[i]=B[i]+C[i];

Shared Memory

A,B,C,size

Private
Memory

i

Private
Memory

i

Data can be shared or private

• Shared data can be seen by all threads

• Private data is only visible to the thread that owns it

By default:

• Local variables in parallel sections are private

• Variables defined in serial parts are shared

Data Management
Shared & private variables

OpenMP provides ways to change the default
behavior:

• private allocates a private copy of variable without
initialization

• firstprivate makes a variable private and initialize
it by copying the value from global one

• lastprivatemakes a variable private and copy back
the final value of the loop from the last thread into
the original variable int size = 1000;

#pragma omp parallel for firstprivate(size)
for(int i=0; i<size; i++)

A[i]=B[i]+C[i];

Shared Memory

A,B,C,size

Private
Memory

i,size

Private
Memory

i,size

Data Management
Race Condition

Each thread can read from shared variables without any restriction

But writing on a shared variable gives unpredictable results:

These errors are very difficult do detect!

int size = 1000;
double sum = 0;

#pragma omp parallel for
for(int i=0; i<size; i++)

sum+=B[i]+C[i]; // Race error!! sum will be wrong!!

Data Management
Synchronization

atomic:

• Low overhead

• Uses hardware instructions

reduction:

• each loop has a private copy

• The overhead is at the end of the loop

• Good for large loops

Critical:

• Not recommended

double dot = 0;
#pragma omp parallel for
for(int i=0; i<size; i++)

#pragma omp atomic
dot+=B[i]*C[i]; // Very low overhead

double dot = 0;
#pragma omp parallel for \

firstprivate(dot) reduction(+:dot)
for(int i=0; i<size; i++)

dot+=B[i]*C[i]; // sum is a private copy

double dot = 0;
#pragma omp parallel for
for(int i=0; i<size; i++)

#pragma omp critical
{dot+=B[i]*C[i];} // run in serial!!

Concurrency vs parallelism

PARALLELISM: a lot of (almost) independent
Things going on

CONCURRENCY: a lot of things go on at the same
time … but with lots of interactions

OpenMP originally designed with this in mind!

Beyond OpenMP : Tasks & futures (just a
glimpse)
Let’s imagine that we want to compute a result of type

double res = f(g(x) + e(x)) * d(y)

Extracting as much parallelism as we can.

What we described so far is not enough … so the question is: can we
do such calculations in parallel?

Beyond OpenMP : Tasks & futures (just a
glimpse)
We could compute

double tmp1 = g(x)

double tmp2 = e(x)

double tmp3 = d(y)

double tmp4 = f(tmp1 + tmp2)

double res = tmp4*tmp3

tmp1, tmp2, tmp3 can be run concurrently, however tmp4 needs
to wait on the first 2 and res needs o wait to the end

The solution is to define “futures” to be run
asyncronously
NOTE: syntax does not exactly follow any language!

Future<double> tmp1 = pool.async(g(x))

Future<double> tmp2 = pool.async(e(x))

Future<double> tmp3 = pool.async(d(y))

Future<double> tmp4 = pool.async(f(tmp1.get() + tmp2.get()))

Future<double> final = pool.async(tmp4.get()*tmp3.get())

double res = final.get()

The idea is that the different functions will be put in a pool, and executed when their inputs are
available

Of course tmp1,tmp2,tmp3 CAN be executed altogether, and the following execution may happen
serially.

HOWEVER consider the case in which g(x) and e(x) run much faster tan d(y). In that case tmp4 can be
executed while tmp3 is still running … thus enabling much more parallelism.

What should be use?

Futures allow to express more complex parallelism.

THIS COMES AT A PRICE! More infrastructure needed to decide what
is to be run and at which point

Loop level parallelism (OpenMP like) will typically have a lower
overhead, and hence should be preferred when possible.

Some useful libraries to experiment on
parallelism
Disclaimer: heavy bias towards c++!!

- https://github.com/taskflow/taskflow

- https://hpx.stellar-group.org/

- https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onetbb.html

https://github.com/taskflow/taskflow
https://hpx.stellar-group.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

Thanks
Questions or Comments?

