
High Performance 
Computing

An Introduction



HPC
High Performance Computing (HPC) is …

about the efficient use of large computing resources 



HPC
Overview
Shared Memory Machines (SMMs)

• pthreads

• OpenMP

Distributed Memory Machines (DMMs)

• MPI

GPUs

• OpenCL

• CUDA
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Efficent use of resources
By knowing better the hardware



Hardware
Central Processing Unit (CPU)

• Core(s)

• Cache Memory 

• Memory Controller

• Several IO with other CPUs and devices 



CPU “Intelligence” 

CPUs integrate many technologies to ease 

Developing fast code

• Branch prediction
• Static BP: loop, calls
• Dynamic BP: if, switch

• TLB: Translation Look-ahead Buffer
• Pattern detection, locality

• Reservation buffer:
• Re-use of calculated data

• Dynamic execution:
• Reordering of instructions (out-of-order)
• Reordering of load/stores

• SMT: Simultaneous Multithreading (HT)
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Instruction level Parallelism
Pipeline

Pipeline architecture: several instructions executed at once

A typical process:

In 4 pipeline:

Instr. Fetch Instr. Decode Execution Mem. Access Write Back

Instr. Fetch Instr. Decode Execution Mem. Access Write Back

Instr. Fetch Instr. Decode Execution Mem. Access

Instr. Fetch Instr. Decode Execution

Instr. Fetch

 Increases throughput

 Branch prediction misses  empties pipeline

 Data dependencies, resources conflicts  pipeline stalls

Instr. Fetch Instr. Decode Execution Mem. Access Write Back



Instruction level Parallelism
Software

Instruction level parallelism:

x = a + b + c + d

x = a + b x1 = a + b

x = x + c x2 = c + d

x = x + d x = x1 + x2

for(int i = 0 ; i < 4 ; i++)

c[i]=a[i]+b[i]

We heavily rely on compilers but needs 
help

• Simple logics and loops

• Less branching.

• Less execution order dependency

Hardware assisted:
• Instruction reordering

• Branch prediction

• Data dependencies



Execution of Threads
Simultaneous Multithreading 

• Simultaneous MultiThreading
(AKA Hyper Threading)

• Two logical processors

• One send work as usually

• The seconds is formed with the 
unused resources.

• Useful for normal load

• Ineffective for highly optimized 
algorithm and codes

No SMT SMT
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Random Access Memory 
Structure and limitations

Consist of several layers of hardware

• Cache: usually 3 layers of caches: L1, L2, L3
• Cache is fast but very limited in size

• Small latency and high bandwidth

• L1 is the smalles (~256KB) but fastest 

• L2 is bigger (~1-4MB) but slower than L1

• L3 is the largest (~4-16MB) but slowest 

• Main memory 
• Has a huge latency

• Restricted memory bandwidth 

“What Every Programmer Should Know About Memory” U. 

Drepper, Red Hat, 
http://www.akkadia.org/drepper/cpumemory.pdf

http://www.akkadia.org/drepper/cpumemory.pdf


Random Access Memory
Cache control

As cache speed is not much slower than CPU, it is important to have data in cache 
(cache hit) and not in memory (cache miss)

• Cache buffers are usually 64 bytes, called lines, which fetched together from the 
main memory

• Cache hardware predicts and prefetch data based on typical use patterns

How to improve Cache use?

• Locality is the main tool to improve the cache hit. Having related data together

• Order of access is another important factor. Making the code predictable



Efficient use of Hardware
Suggestions

• Reduce memory footprint to avoid memory bandwidth problem

• Spatial and temporal locality which improves cache efficiency 

• Avoid branches or make them predictable to improve the pipline throughput 

• Avoid system calls Allocating memory is a system call

• Avoid complex instructions use tables, bit hacks, simplify expressions, etc.

• Memory data alignment to improve the cache efficiency

• CPU + compilers help us, but can not do everything. They are conservative.



Shared Memory Machines
Multiprocessor machines

 High speed buses:
 QPI: Intel’s Quick Path Interconnect

 HT: AMD’s Hypertransport

 Issues:
 Access latencies and speed not uniform

 Little penalty, in theory
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Shared Memory Machines
Different Types

Uniform Access Memory (UMA) Non Uniform Memory Access (NUMA)

Memory
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Interconnect

 Interconnect: usually bus, or crossbar

 Issues:

 Interconnect latencies

 Cache coherency, consistency

 Contention
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 Most of the modern multiprocessors machines

 Issues:

 Remote access may take longer (5-10 times)

 Latency, unbalanced bandwidth

 Locality access



Latency benchmark on Intel System
(2 sockets)

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4 



Latency benchmark on AMD System
(2 sockets)

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4 



The (naive) Roofline model



Effect of parallelism on the Roofline model



Effect of memory Access 



Scalability
And its limits



Scalability
Definitions and Types

Scalability is the property of a system to handle a growing amount of work by 
adding resources to the system (Wikipedia)

• Strong Scalability: For a given problem how 
the solution time varies with the number of 
processors (AKA speedup)

Weak Scalability: The variation of solution 
time over different number of processors by 
maintaining the problem size per processor



Scalability
Definitions and Types

Strong Scalability

• Depends on the size of the problem. Usually, larger the problem, better the scalability

• There are minimum size (like 10K  elements per processor) in which stop scaling more.

• In some cases we get super linear speed up because the smaller amount of data fits 
better in cache.

• Shows better the day by day speedup

Weak Scalability

• In an ideal situation, the solution of a problem with 1M elements in one processor 
should be the same as 100M elements problem using 100 processor

• Shows better the algorithmic scalability



Scalability
Theorical limits

Amdahl’s law:

P = fraction of the program to be 
optimized/parallelized, or already 
optimized/parallelized

S = SpeedUp achieved or expected of the 
optimized/parallelized part

SpeedUp (whole program) = 
1

( 1 – P) + P / S 

Scalability for different sequential fractions
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Scalability for different sequential fractions and 

constant overhead = 0.05
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Scalability
Theorical limits
Amdahl’s law with overhead

P = fraction of the program to be 
optimized/parallelized, or already 
optimized/parallelized

S = SpeedUp achieved or expected of the 
optimized/parallelized part

O = Overhead due to Process creation, 
synchronization, destruction or Network 
communications

SpeedUp (whole program) = 
1

( 1–P + ( P / S) + O)



Thanks
Questions or Comments?


