High Performance
Computing

An Introduction

HPC

High Performance Computing (HPC) is ...

about the efficient use of large computing resources

HPC
Overview

Shared Memory Machines (SMMs)
e pthreads
* OpenMP

Distributed Memory Machines (DMMs)
 MPI

GPUs
* OpenCL
* CUDA

http://wccftech.com/amd-radeon-r9-280x-radeon-r7-260x-radeon-r7-240-specifications-confirmed-october-8th-launch/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Efficent use of resources

By knowing better the hardware

Core(s)

Hardware
Central Processing Unit (CPU)

Cache Memory

Memory Controller

Several 10 with other CPUs and devices

O

y
i

dd 44 g
SIS

~ Shared L3 Cache -

CPU “Intelligence”

CPUs integrate many technologies to ease
Developing fast code

* Branch prediction
» Static BP: loop, calls
* Dynamic BP: if, switch

TLB: Translation Look-ahead Buffer
* Pattern detection, locality

Reservation buffer:
e Re-use of calculated data

Dynamic execution:
* Reordering of instructions (out-of-order)
* Reordering of load/stores

SMT: Simultaneous Multithreading (HT)

Instruction level Parallelism
Pipeline

Pipeline architecture: several instructions executed at once

A typlcal process: Instr. Fetch Instr. Decode Execution Mem. Access
In 4 pipeline:

_ Instr. Fetch Instr. Decode Execution Mem. Access
Pipe2 Instr. Fetch Instr. Decode Execution
Pipe3 Instr. Fetch Instr. Decode
Piped Instr. Fetch

[J Increases throughput
[J Branch prediction misses = empties pipeline
[1 Data dependencies, resources conflicts = pipeline stalls

Write Back

Write Back
Mem. Access
Execution

Instr. Decode

Instr. Fetch
Write Back
Mem. Access

Execution

Instruction level Parallelism

Software

Instruction level parallelism:

X=a+b+c+d
X =a+b x1 =a+b
X =X+ C x2 =c¢c+d
X =X + d Xx = x1 + x2

for(int i =0 ; i < 4 ; i++)
c[i]=a[i]+b[1i]

We heavily rely on compilers but needs
help

e Simple logics and loops
* Less branching.

* Less execution order dependency

Hardware assisted:
* Instruction reordering
* Branch prediction
* Data dependencies

Execution of Threads
Simultaneous Multithreading

e Simultaneous MultiThreading
(AKA Hyper Threading)
* Two logical processors
* One send work as usually

* The seconds is formed with the
unused resources.

e Useful for normal load

* Ineffective for highly optimized
algorithm and codes

No SMT
Core: 1 2 3 4

Time (cycles)

SMT
Core: 1 2 3 4

Random Access Memory
Structure and limitations

Consist of several layers of hardware

e Cache: usually 3 layers of caches: L1, L2, L3
Cache is fast but very limited in size

Small latency and high bandwidth

L1 is the smalles (~¥256KB) but fastest

LLLLLLLI

TTrrrned

LATENCY

_<roorie R sensore

T |

LLLLL L]

rrrrrene

LATENCY

rerrerea
A

L4
Lidiiial

BANDWIDTH

BANDWIDTH

LU Ll 1]

rrrrrorey

rrrrTrTrey

* L2is bigger (~1-4MB) but slower thanL1 Nemien RN el "
e |3is the Iargest (~4_16M B) bUt Slowest ; SIS : T 1[............ 1 Graphics
L2 L2 L2 caches
* Main memory :
...................................... PSS f S
* Has a huge latency L3
]] LLC - Last Level Cache (2MB/core)
e Restricted memory bandwidth
eDRAM
.. l..... T
“What Every Programmer Should Know About Memory” U. | Other System Agent |—— :ﬁ: { mMc b—] DDR
Drepper, Red Hat, Tags
http://www.akkadia.org/drepper/cpumemory.pdf intel Next Generatian Microarchitectura Code Kame Skylake

IDF 5

http://www.akkadia.org/drepper/cpumemory.pdf

Random Access Memory
Cache control

As cache speed is not much slower than CPU, it is important to have data in cache
(cache hit) and not in memory (cache miss)

e Cache buffers are usually 64 bytes, called lines, which fetched together from the
main memory

e Cache hardware predicts and prefetch data based on typical use patterns

How to improve Cache use?
* Locality is the main tool to improve the cache hit. Having related data together

e Order of access is another important factor. Making the code predictable

Efficient use of Hardware
Suggestions

* Reduce memory footprint to avoid memory bandwidth problem

e Spatial and temporal locality which improves cache efficiency

* Avoid branches or make them predictable to improve the pipline throughput
* Avoid system calls Allocating memory is a system call

* Avoid complex instructions use tables, bit hacks, simplify expressions, etc.

* Memory data alignment to improve the cache efficiency

* CPU + compilers help us, but can not do everything. They are conservative.

Shared Memory Machines
Multiprocessor machines

[J High speed buses:
B QPI: Intel’s Quick Path Interconnect
B HT: AMD’s Hypertransport

[1 Issues:

B Access latencies and speed not uniform

Processor Processor
Processor Processor

M Little penalty, in theory

Processor Processor
Processor Processor

Shared Memory Machines
Different Types

Uniform Access Memory (UMA) Non Uniform Memory Access (NUMA)

[Interconnect

S

[Processor} Processor}

nl

Processor

)

Processo

[0 Most of the modern multiprocessors machines

ﬁDI’OCGSSO% ﬁDI’OCGSSO%

[1 Interconnect: usually bus, or crossbar

] Issues:

.] Issues:
| Interconnect IatenC|es

. | - [
B Cache coherency, consistency Remote access may take longer (5-10 times)

. .
B Contention Latency, unbalanced bandwidth

M Locality access

Latency benchmark on Intel System
2 sockets

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4

Latency benchmark on AMD System
(2 sockets)

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4

The (naive) Roofline model

(punog-amndwod)°

(punog-£rowaw)'Q

] 1 1
od
— ~ M—-.l

A —

[SdO014D] 9>uewl0]iad

64 128

32

16

1/2

1/4

Operational Intensity [FLOPS/byte]

Effect of pa*rallelism on the Roofline model

K
#
’4"
2 - ol JU
@ N . + 1
% . + without Instruction Level Parallelism (ILP)
> Q2
Li without Task Level Parallelism (TLP)
§ 1/2 -
m
£
£ 1/4 1
[
o
1 1 1 1]] 1 1 }
1/4 1/2 1 2 4 8 16

Operational Intensity [FLOPS/byte]

Effect of memory Access

A
,4‘
#
’f
A z,
vy
a8
o 1 -
—
L
=
w —
Y 1/2
n
£
£ 1/4 1
[
o
1 1 1 1 1 1 1
1/4 1/2 1 2 4 8 16

Operational Intensity [FLOPS/byte]

Scalability

Scalability

Definitions and Types

Scalability is the property of a system to handle a growing amount of work by
adding resources to the system (Wikipedia)

e Strong Scalability: For a given problem how Weak Scalability: The variation of solution
the solution time varies with the number of time over different number of processors by
processors (AKA speedup) maintaining the problem size per processor

104

16
—f— Velocity Build

—— Velocity Solve

1D1 n

Solve time

1536 3072

Number of processors 1 D 0

384 768

1 7 14 28 112 448 1792

Scalability

Definitions and Types

Strong Scalability
* Depends on the size of the problem. Usually, larger the problem, better the scalability
* There are minimum size (like 10K elements per processor) in which stop scaling more.

* In some cases we get super linear speed up because the smaller amount of data fits
better in cache.

* Shows better the day by day speedup

Weak Scalability

* In an ideal situation, the solution of a problem with 1M elements in one processor
should be the same as 100M elements problem using 100 processor

* Shows better the algorithmic scalability

Scalability

Theorical limits

Amdahl’s law:

1

SpeedUp (whole program) =
(1-P)+P/S

P = fraction of the program to be
optimized/parallelized, or already
optimized/parallelized

S = SpeedUp achieved or expected of the
optimized/parallelized part

Speed Up

160

140

120

100

80

60

40

20

Scalability for different sequential fractions

——0,2
—=—0,5
0,8
0,9
——0,95
—— 0,99
—— 0,995

2 4 8 16 32 64 128 256
of processors

Scalability
Theorical limits

Amdahl’s law with overhead

1

SpeedUp (whole program) =
(1-P+(P/S)+0)

P = fraction of the program to be
optimized/parallelized, or already
optimized/parallelized

S = SpeedUp achieved or expected of the
optimized/parallelized part

O = Overhead due to Process creation,
synchronization, destruction or Network
communications

Speed Up

20
18
16
14
12
10

o N b~ OO @

Scalability for different sequential fractions and
constant overhead = 0.05

——0,2
—=—0,5
0,8
0,9
—— 0,95
——0,99
—— 0,995

processors

Thanks

Questions or Comments?

