
An introduction to
scientific computing
with GPUs
FARSHID MOSSAIBY, SEPTEMBER 2019
UPC, BARCELONA, SPAIN

2

Course plan

• Day 1: Introduction, GPU hardware, OpenCL concepts

• Day 2: OpenCL API, OpenCL C language

• Day 3: Optimizing algorithms for GPU architecture

• Day 4: Practical usage of OpenCL

• Day 5: Open discussion

3

Contents

• Introduction

• Prerequisites

• References and further reading

• Parallelism

• The history of GPUs

• GPU hardware

4

Contents (cont’d)

• OpenCL concepts

• OpenCL programming model

• Your first OpenCL program

• Code optimization

• Redesigning your algorithm for GPU

• Use case: FEM assembly of elemental contributions

• Using multiple GPUs on a single host

5

Contents (cont’d)

• Case study: Porting the SCM to a multi-GPU platform

• Beyond multiple GPUs on the same host using MPI

• What’s next?

• Conclusion

6

Introduction

• In this course, you will learn on how to start leveraging the
computational power of GPUs in your number crunching
code!

• Please ask your questions whenever you want

• This presentation as well as all code sample will be found
after the finishing, at http://yon.ir/OpenCL

7

Prerequisites

• I assume you…

• are familiar with the C/C++ programming; do not panic! Basic
C/C++ syntax is enough

• know some basic concepts about the computer’s hardware; CPU,
RAM, registers, etc., however, we can discuss these a bit if you have
problems

• have access to a Windows/Linux/Mac system equipped with a
supported GPU and needed software, in case you want to try the
example codes or develop your own; I can help you install the
required software on your laptop

• are motivated to learn new things (just like me!)

8

References and further reading

• The OpenCL standard

• The specifications for OpenCL API and OpenCL C language

• Guides from AMD, NVIDIA, Intel, etc.

• There are several guides available from each vendor; the most
important one will be the Code Optimization guide

• Many books are available on OpenCL programming

9

Parallelism

• Engineers and scientists face more and more complex
problems, which need huge computational resources

• In the early days of CPUs, newer CPUs usually had a higher
clock frequency than their old counterparts; i.e. they
(among the other things) worked at a higher speed

• Soon CPUs approached the physical limit on the clock
frequency (somewhere between 3 and 4 GHz), so they
started to perform multiple instructions in each cycle, i.e.
instruction level parallelism (ILP)

10

Parallelism (cont’d)

• ILP was not enough for all needs, so other types of
parallelism came into play

• Task level parallelism (TLP) or multiple instruction multiple data
(MIMD)

• Data parallelism or single instruction multiple data (SIMD)

• CPUs became equipped with multiple cores to handle
simultaneous jobs (TLP)

• CPUs also tried to do similar calculations on different data
using their SIMD units to speed up calculations

11

The history of GPUs

• GPU stands for Graphics Processing Unit, and is the
counterpart of your Central Processing Unit (CPU) on your
graphics card

• GPUs were designed to accelerate the graphics
operations, so CPU could offload such (heavy) tasks to
them, performing other tasks

• Thanks to the gaming industry (!), GPUs have enjoyed
heavy development over the last years, and gained
computational capabilities several times more than CPUs
released at the same time

12

© NVIDIA

13

© NVIDIA

14

The history of GPUs (cont’d)

• Some scientists tried to leverage this high potential, but
there was a big problem: GPUs, unsurprisingly, were
deigned for graphics operations and not general
computing, so scientists had to cast their calculations in
terms of graphics operations and use graphics libraries like
OpenGL

• This was neither easy, nor always possible, hence, due to
the demand, the era of GPGPU began

• GPGPU stands for general processing on GPUs

15

The history of GPUs (cont’d)

• GPU vendors started to make their graphics pipelines
programmable, i.e. programmers could write a simple
program, called shader, to be run on the GPU

• This was the starting point for more sophisticated GPU
programming frameworks

• The major step forward in this regards was the introduction
of NVIDIA’s CUDA in 2008

• CUDA (used to) stands for Compute Unified Device
Architecture

16

The history of GPUs (cont’d)

• CUDA offered a free generic programming framework in
C/C++ language

• CUDA attracted many researchers and practitioners to use
the huge computational power of millions of already
available NVIDIA GPUs

• CUDA ecosystem started to mature rapidly; CUDA is at
version 10.1 now, and several libraries based on it have
been developed and used by scientific codes and
commercial programs

17

The history of GPUs (cont’d)

• CUDA has a major drawback: vendor lock, i.e. it is only
available of NVIDIA GPUs, so the codes developed using it
can only be run only on NVIDIA GPUs

• Almost a year after introduction of CUDA, a consortium of
several industry giants, lead by Apple, started to work on
the draft of a royalty-free, open standard for
heterogeneous computing, named OpenCL

• OpenCL stands for Open Computing Language

18

The history of GPUs (cont’d)

• OpenCL is adopted by many companies, and conformant
implementations are available from Altera, AMD, Apple,
ARM, Creative, IBM, Imagination, Intel, NVIDIA, Qualcomm,
Samsung, Vivante, Xilinx, and ZiiLABS [Wikipedia]

• As you may notice, not all of the above companies build
GPUs; OpenCL is not limited to GPUs, and can be used on
a vast range of technologies, including (multi-core) CPUs,
GPUs, DSPs, FPGAs, and other accelerators [Wikipedia]

19

The history of GPUs (cont’d)

• Codes written in compliance with OpenCL standard can
be compiled on all conformant platforms, though there
remains the problem of performance-portability which is
still an open topic

• You can use OpenCL on your phone! Interesting!

20

GPU hardware

• The hardware of today’s GPUs is much more complex than
that of CPUs

• Modern GPUs use parallelism mostly in form of SIMD, i.e.
they perform well when they are asked to perform the
same set of instructions on a large volume of data

• GPUs are comprised, among the other things, a set of
multi-processor units

• Each multi-processor has several processor units, which
operate on different data in parallel

21

GPU hardware (cont’d)

• You may have heard of the term core or (CUDA core) in
the GPU specifications; this is the total number of the
processor units in the GPU

• A core in a GPU has much less computational power than
that of a CPU

• Instead, today’s modern GPUs offer thousands of these
cores, hence the name many-core processors, in contrast
to multi-core CPUs

22

GPU hardware (cont’d)

• From NVIDIA K80 GPU specifications:

© NVIDIA

23

GPU hardware (cont’d)

• The very high number of cores requires a very complex
design, so that the computational power scales with the
number of cores

• Additionally, a different programming model is required to
take advantage of this hardware

• The complexity of the hardware mostly comes from the
memory hierarchy available in GPUs

• Each memory type has different characteristics and use
cases

24

© hpcwire.com

25

I hope you still follow me!

© giphy.com

26

OpenCL concepts

• Host: The computer with the compute devices

• Platform: An implementation of OpenCL running on the
host; there might be several platforms available on a single
host

• Context: The communication channel between your code
and the OpenCL platform

• Device: The compute device

27

OpenCL concepts (cont’d)

• Kernel: A function executed on the device

• Program: A set of kernels, usually compiled from source
using the OpenCL run-time compiler

• Command queue: A queue of the commands, sent by
your code, to be executed on the device

• Buffer: A linear set of bytes allocated on the device’s
memory

• …

28

OpenCL execution model

• As mentioned earlier, GPUs need a different programming
model to take advantage of thousands of cores

• This is due to the fact that GPUs (as well as many other
accelerators) have a different execution model

29

OpenCL execution model (cont’d)

• In the simplest form, instead of running the code inside a
for loop for N times, you put the code inside a kernel

• Then, you ask the OpenCL scheduler to run the kernel
using N threads

• A thread can be defined as a path of execution

• Each thread will run on a single core of the GPU,
effectively running one step of the original for loop

30

OpenCL execution model (cont’d)

• The number of hardware cores on the GPU, though much
more than that of CPUs, is limited to a few thousands in
recent GPUs

• We may need to run the kernel millions of times

• Solution: The OpenCL scheduler divides the total work
items into a series of workgroups

• The cores in a workgroup run the same kernel instructions
on a multi-processor unit

31

OpenCL execution model (cont’d)

• The execution continues until the kernel reaches, for
example, a global memory read/write request

• As this operation is very time-consuming (it can take
600~700 GPU cycles to complete), the scheduler stalls the
current workgroup, and allocates a new one, until the
memory operation is completed

32

OpenCL execution model (cont’d)

• Even this newly allocated workgroup may encounter a
memory operation, even before the last one is completed

• In this case, the scheduler allocates a third workgroup

• This process continues until the first memory transaction is
completed

• After completion of the memory transaction, the scheduler
re-allocates the corresponding workgroup, and the
execution continues from were it was stalled

33

© giphy.com

34

OpenCL execution model (cont’d)

• Consider a simple code for addition of two vectors
defined as follows

const double *a;

const double *b;

double *c;

const int N = ...; // ‘N’ is the size of the vectors

35

OpenCL execution model (cont’d)

• Serial CPU version

for (int i = 0; i < N; i++)

{

c[i] = a[i] + b[i];

}

• The order of execution of inner code is deterministic

36

OpenCL execution model (cont’d)

• Parallel CPU version using OpenMP

#pragma omp parallel for

for (int i = 0; i < N; i++)

{

c[i] = a[i] + b[i];

}

• Equivalent to running part of the above loop on each core

• The inner code for different values of i should be independent

• Race conditions can easily occur

37

OpenCL execution model (cont’d)

• Parallel GPU version using OpenCL

i = get_global_id(0);

if (i < N)

{

c[i] = a[i] + b[i];

}

• Ask the scheduler to run the above code using N threads

• The order of execution of the workgroups is non-deterministic

• We must take care of Race Conditions here, too

38

OpenCL execution model (cont’d)

• This complicated execution model is designed to hide
memory latency, the main bottleneck of GPGPU

• CPUs try to use cache to this end

• There is a cache hierarchy (L1, L2, L3) in CPUs

39

OpenCL execution model (cont’d)

• In GPUs usually there is no cache memory, hence the
described process is used hide the memory latency

• There are some side effects

• There must be enough threads to saturate the GPU, otherwise
scheduler will not be able to hide the memory latency

• Coalesced memory access and bank conflict in memory access is
very important; if consecutive memory addresses are requested by
threads in a workgroup, the memory controller can fulfill the request
much faster; in contrast, if the memory pieces requested are from
different memory banks, the transaction takes much longer

40

OpenCL execution model (cont’d)

• The details of coalesced memory access and bank
conflict is beyond the scope of this course

• Please note that the above issue is also hardware
dependent; so, you need to consider this for a high-
performance code

41

OpenCL execution model (cont’d)

• The division of work items into workgroups may be easier to
do in 1, 2 or 3 dimensions, due to nature of the problem

• This is called a ND Range in OpenCL terminology

• What we just discussed was a 1D division

42

From OpenCL by example, © packtpub

43

OpenCL execution model (cont’d)

• Consequences of the GPU execution model

• GPUs are not suitable for small workloads, as the overheads will be
more pronounced

• Every memory access in the code should be done with care; too
many memory accesses will have a negative effect on your code’s
performance

• The algorithm must be modified, as much as possible, to avoid
irregular memory access to boost the performance of the code

44

OpenCL API

• OpenCL can be divided into two major parts:

• OpenCL API, callable from host, which allow you query for available
platforms, devices, etc., compile and run kernels and more

• OpenCL C, the language used inside kernels and used for doing the
calculations; it also exposes several utility and math functions

• We will be discussing OpenCL API’s C interface, as it is the
officially supported one

• Detailed information about the API can be found in
OpenCL specifications; keep it handy when coding!

45

OpenCL API (cont’d)

• OK, enough intro! Let’s jump in and get our feet wet!

• If you want to follow the code samples, make sure you
have installed your GPU’s OpenCL SDK

• NVIDIA: Install NVIDIA CUDA Toolkit:

• https://developer.nvidia.com/cuda-downloads

• AMD: For Linux, installing the latest driver for your GPU with --opencl
option will install all you need; in case of Windows, install the latest
driver and use OpenCL SDK light for headers and libraries:

• https://www.amd.com/en/support

• https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases

46

OpenCL API (cont’d)

• We will only briefly review the most important functions in
OpenCL API. For details, error codes, etc., please refer to
OpenCL specifications.

• Start by including the OpenCL’s header file:

#include <CL/cl.h>

• On Mac OS systems, you should use this form instead

#include <OpenCL/cl.h>

47

OpenCL API (cont’d)

• First of all, we ask for the available platforms, using
clGetPlatformIDs and get information about them using
clGetPlatformInfo

48

OpenCL API (cont’d)

• After the selection of the platform, now we may query
available devices using clGetDeviceIDs and get
information about them using clGetDeviceInfo; there are
several items you can get information about

49

OpenCL API (cont’d)

• The next important step is creating a context. An OpenCL
context is created with one or more devices using
clCreateContext:

50

OpenCL API (cont’d)

• The functions with clCreate prefix have corresponding
clRetain and clRelease counterparts to increase the
reference count or release of the object, in this case
clRetainContext and clReleaseContext:

51

OpenCL API (cont’d)

• A command queue needs to be created for each device
in the context, so the code can communicate with the
device and send commands to it. This is done using
clCreateCommandQueue (deprecated in OpenCL 2.0) or
clCreateCommandQueueWithProperties:

52

OpenCL API (cont’d)

• The next important thing is the buffer objects, used to store
data on the device. A buffer object can be created using
clCreateBuffer:

• Several flags can be passed to this function; they may be
used to allocate pinned host memory for faster data
transfers between the host and devices

53

OpenCL API (cont’d)

• Buffers can be divided into sub-buffers using the
clCreateSubBuffer function; it can boost the performance
when the code reads or writes to a part of the buffer in a
kernel and uses the whole in another

54

OpenCL API (cont’d)

• Data transfers between the host and the device can be
done via buffers. There are flags for asynchronous
operations. clEnqueueReadBuffer and
clEnqueueReadBufferRect are the functions used to read
from buffers…

55

OpenCL API (cont’d)

• …while clEnqueueWriteBuffer and
clEnqueueWriteBufferRect do the reverse.

56

OpenCL API (cont’d)

• For completeness, there are functions to copy data
between the buffers, clEnqueueCopyBuffer and
clEnqueueCopyBufferRect…

57

OpenCL API (cont’d)

• …as well as a functions to fill the buffers,
clEnqueueFillBuffer:

58

OpenCL API (cont’d)

• Buffers can be mapped into host address space using
clEnqueueMapBuffer:

59

OpenCL API (cont’d)

• It should be noted that while mapping buffers seems like a
very convenient way to copy data to a buffer, it is not
exempt from the restrictions that we shall review later; i.e.
each read or write to the mapped region will trigger a
read or write via PCIe (with the usual overheads) and it
maybe much better if such read/writes are combined into
a single one, if possible.

60

OpenCL API (cont’d)

• Similar to buffers that are usually used to store data, there
are also image objects in OpenCL. Image objects are
usually used for storing visual data (or computational data
to be visualized) with interoperation of OpenCL and
graphics libraries, such as OpenGL or DirectX.

• Images can have other uses as well, such as hardware
interpolation/clamping as well as cache-like mechanism
for reading data.

• There are functions to read, write and copy data between
host and device images, and buffers.

61

OpenCL API (cont’d)

• OpenCL programs contain one or more kernels. The
kernels are usually compiled from source in OpenCL using
clCreateProgramWithSource; please note while this can
help the compiler generate an optimized code for the
device, it may be a drawback for commercial/closed
source program.

62

OpenCL API (cont’d)

• After creation of a program, it should be compiled (built)
using clBuildProgram. Command line options can be
passed to the compiler. Among the most useful ones is the
-D option for defining macros which can help building a
rather general kernel for a specific purpose or for
parameter tuning. Other useful ones may be how the
code deals with numerical accuracy, optimization, etc.

63

OpenCL API (cont’d)

• Kernel objects need to be created once a program is built,
so they can be called from host. A kernel object, not so
surprisingly, is built using clCreateKernel.

64

OpenCL API (cont’d)

• As you remember, a kernel is a function intended to run on
the device. A kernel is a void function, as we will see later,
but may accept arguments. These arguments are set using
clSetKernelArg function:

65

OpenCL API (cont’d)

• Kernels can be queued for execution using
clEnqueueNDRangeKernel function. It is worth noting the
error reported by this function is just about queuing the
kernel, and not its execution (which is an asynchronous
operation, by the way). You’ll need to check for possible
runtime errors later.

66

OpenCL API (cont’d)

• Command queues can be flushed using clFlush function
to ensure that the command are sent to the appropriate
device. To make sure all the command are finished
execution, one may use clFinish instead. Never call these
functions (especially the latter, which is a blocking
function) if your has not yet reached a synchronization
point. clFinish can also be used to check for runtime
errors when running kernels.

67

OpenCL C language

• OpenCL C language is used to write kernels. It is a subset
of C99 with some additions / restrictions for OpenCL
kernels. If you know basic C/C++, you should be OK to go.

• A kernel is identified by the __kernel prefix (note the two
underscores):

__kernel void first_kernel(

__global double *a,

const int N)

{ … }

68

OpenCL C language (cont’d)

• The following is the basic set of scalar data types available:

• bool

• char, unsigned char, uchar

• short, unsigned short, ushort

• int, unsigned int, uint

• long, unsigned log, ulong

• float, double, half

• …

69

OpenCL C language (cont’d)

• Each internal type has a representative type in host side;
remember we will be reading and writing data from
devices; all these type will have a cl prefix:

• cl_char, cl_uchar

• cl_short, cl_ushort

• cl_int, cl_uint

• cl_long, cl_ulong

• cl_float, cl_double, cl_half

70

OpenCL C language (cont’d)

• There are also vector data types available; n can be 2, 3,
4, 8 or 16:

• charn, ucharn

• shortn, ushortn

• intn, uintn

• longn, ulongn

• floatn, doublen

• Please note that, old GPUs do not support double and
doublen data types. Also, you need to explicitly enable
their support to use them.

71

OpenCL C language (cont’d)

• Vector data types help vectorizing your code to gain more
speed up. Use vector data types where possible.

• For n other than 3, a data item declared to be a data
type in memory is always aligned to the size of the
data type in bytes. For example, a float4 variable will be
aligned to a 16-byte boundary, a char2 variable will be
aligned to a 2-byte boundary. For n equal to 3, the size is
taken to be as the case n = 4;

72

OpenCL C language (cont’d)

• A built-in data type that is not a power of two bytes in size
must be aligned to the next larger power of two. This rule
applies to built-in types only, not structs or unions.

• Vector literals can be used to create vectors from a list of
scalars, vectors or a mixture thereof. A vector literal can be
used either as a vector initializer or as a primary expression:

(float4) (1.0f, 2.0f, 3.0f, 4.0f)

(float4) (some_float_2, some_other_float_2)

(float4) (0.0f, some_float_3)

73

OpenCL C language (cont’d)

• Vector data types with 2, 3 and 4 elements support any
combination of meaningful x, y, z and w accessors:

float4 a4 = (float4) (1.0f, 2.0f, 3.0f, 4.0f);

a4.x = 3.0f;

float2 a2 = a4.xy;

float2 b2 = a4.xw;

float4 b4 = b2.xyyx;

74

OpenCL C language (cont’d)

• Vector data types may be used with numerical indices,
too; The numeric indices must be preceded by the letter s
or S.

75

OpenCL C language (cont’d)

• It is forbidden to ask for the address of a component of a
vector variable:

float8 a;

float *b = &a.x; // Illegal, won’t compile!

76

OpenCL C language (cont’d)

• Vector operations are component-wise:

float4 a;

float b;

float4 c = a + b;

• The components of c will be equal to sum of the
corresponding component in a plus b.

77

OpenCL C language (cont’d)

• Address spaces in OpenCL C

• As discussed earlier, there are different types of memory in
GPUs, so it should be logical for the compiler to know
which type of memory a pointer points to

• The following address space qualifiers are defined:

__global, __constant, __local, and __private

• They point to global, constant, shared and private type of
memory, respectively. Address spaces are very important
when passing arguments to a kernel, for example

78

OpenCL C language (cont’d)

• Here is an example:

// Declare a pointer p in the global address space that

// points to an object in the global address space

__global int *p;

void f(...) {

// Declares an array in the private address space

float x[4];

}

79

OpenCL C language (cont’d)

• Kernel arguments declared to be a pointer or an array of a
type must point to one of the named address spaces
__global, __local or __constant

• A pointer to address space A can only be assigned to a
pointer to the same address space A

• Casting a pointer to address space A to a pointer to
address space is B illegal if A is not the same as B

80

OpenCL C language (cont’d)

• The __global or global address space name is used to
refer to memory objects (buffer or image objects)
allocated from the global memory pool

• A buffer memory object can be declared as a pointer to a
scalar, vector or user-defined struct; this allows the kernel
to read and/or write any location in the buffer

• The const qualifier can also be used with the __global
qualifier to specify a read-only buffer memory object; the
access type to a buffer is specified when creating the
buffer

81

OpenCL C language (cont’d)

• Example:

global float4 *color; // An array of float4 elements

typedef struct {

float a[3];

int b[2];

} foo_t;

global foo_t *my_info; // An array of foo_t elements

82

OpenCL C language (cont’d)

• The __local address space is used to describe variables
that need to be allocated in local memory and are shared
by all work-items of a work-group

• Pointers to the __local address space are allowed as
arguments to functions (including kernels)

• Variables declared in the __local address space inside a
kernel must occur at kernel scope

83

OpenCL C language (cont’d)

• Example:

kernel void my_kernel(...) {

local float a;

local float b[10];

if (...)

{

local float c; // Not allowed!

}

}

84

OpenCL C language (cont’d)

• Variables allocated in the __local address space inside a
kernel function are allocated for each work-group
executing the kernel and exist only for the lifetime of the
work-group executing the kernel

• These variables are usually used by the threads in a
workgroup to cooperate and boost the performance of
the kernel

85

OpenCL C language (cont’d)

• Variables inside a kernel function not declared with an
address space qualifier, all variables inside non-kernel
functions, and all function arguments are in the __private
or private address space

86

OpenCL C language (cont’d)

• There are a series of attributes which can be defined for
functions; these attributes can be very useful for some kind
of optimizations that can be done on kernels or giving hints
to the compiler. For example,
__attribute__((work_group_size_hint(X, Y, Z))) is a
hint to the compiler and is intended to specify the work-
group size that may be used as arguments to
clEnqueueNDRangeKernel

• On the other hand,
__attribute__((reqd_work_group_size(X, Y, Z))) is the
work-group size that must be used with the kernel

87

OpenCL C language (cont’d)

• There are attributes for giving hint to the compiler how
unroll the loops, for example:
__attribute__((opencl_unroll_hint(2)))

while (*s != 0) *p++ = *s++;

• The above code will tell the compiler to unroll the loop with
a factor or 2

• Specifying 1 as the unroll loop hint means that the loop
should not be unrolled

88

OpenCL C language (cont’d)

• There is a long list of restrictions in OpenCL C due to its
nature. For example, recursion is not allowed, or you
cannot ask for a pointer to a function. You may refer to
Section 6.9 of the OpenCL C specifications for more
information.

89

OpenCL C language (cont’d)

• OpenCL compiler supports preprocessing; other than the
usual use case, it can be used to enable / disable some
features (extensions in OpenCL terminology) or change
the behavior of the code. For example, to enable double
data type, one needs to have the following statement in
the code:

#pragma OPENCL EXTENSION cl_khr_fp64: enable

• A more complete version, taking into account older AMD
devices is shown in the next slide

90

OpenCL C language (cont’d)

#ifdef cl_khr_fp64

#pragma OPENCL EXTENSION cl_khr_fp64: enable

#else

#ifdef cl_amd_fp64

#pragma OPENCL EXTENSION cl_amd_fp64: enable

#else

#error “Cannot enable FP64 on this device."

#endif

#endif

91

OpenCL C language (cont’d)

• Built-in functions

• There are a lot of built-in functions in OpenCL C that helps
the programmer to get the necessary information (such as
the thread ID) or reduce the amount of the code
necessary to perform the operation of interest, as well as
accelerating the code

92

OpenCL C language (cont’d)

• Work-item related functions:

get_work_dim, get_global_size, get_global_id, get_local_size,
get_local_id, get_num_groups, get_group_id, get_global_offset,
get_global_linear_id, get_local_linear_id

• Math functions

• Constants and Macros

• General functions

• Geometric functions

93

OpenCL C language (cont’d)

• Vector data load and store functions

• Synchronization Functions

• Atomic functions

• printf

• …

94

Code optimization

• Minimize host-device data transfer; data is transferred via
PCIe bus, which has limited bandwidth

• Host-device data transfer is done via DMA (direct memory
access), i.e. without CPU intervention; so you may do other
useful work while data transfers are in progress

• Kernel execution is also done on GPU without CPU
intervention; so when the work is offloaded to GPU, you
may do other things on CPU

95

Code optimization (cont’d)

• Re-order your calculations inside your kernel, when
possible, to use the result of last calculated value
immediately; GPUs usually can optimize the use of registers

• Fuse small kernels, i.e. merge kernels when possible to
avoid kernel launch overhead

• Profile your code using GPU profilers when available;
check GPU occupancy, memory throughput, kernel
register usage, etc. to find the bottlenecks of your code. If
your kernel uses too much registers, you may try re-working
it or breaking it into parts

96

Code optimization (cont’d)

• Use asynchronous version of command when possible, and
check for their completion only when you need the results;
do other tasks while these command are being run

• Not all algorithms can benefit from such optimizations; try
to rework your algorithm to use them, if possible

• Minimize barriers; use them only when they are needed

• Set only changed kernel parameters; others are kept
between launces

97

Code optimization (cont’d)

• Use local memory when possible

• Pass constants / parameters as macros on OpenCL
compiler’s command line when possible, so the compiler
can generate an optimized code

• Try auto-tuning (runtime tuning), when you are going to
call your kernels a lot of times and there are some tunable
parameters

98

Thank you!

Happy coding!

99

100

