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ABSTRACT 

Model order reduction is a rapidly developing field of fluid dynamics that seeks to improve simulations 
and enhance our understanding of complex flow phenomena. Such a reduction is often unavoidable as 
the direct identification of bifurcations, nonlinear interactions, state transitions, non-trivial attractors 
in high-dimensional CFD models in computationally unfeasible, if not unattainable. Beyond their use 
in explaining flow phenomena in a simplified manner, reduced-order models also hold great promise 
in design optimization and flow control. Due to the recent advances in numerical simulations and 
experimental methods, data-driven model-reduction ideas are also becoming feasible in addition to 
equation-based techniques.  

Both equation- and data-driven reduced-order modeling methods have their respective advantages and 
disadvantages. While machine learning and artificial intelligence offer new and powerful approaches 
to reduced-order modeling, they often lack physical interpretability and suffer from overfitting. On the 
other hand, purely equation-based modeling suffers from computational complexity, convergence 
issues and overly stringent assumptions. 

This minisymposium seeks to present a broad view on the state of the art in model reduction methods 
for fluid flows, ranging from purely equation-driven to entirely data-driven approaches. Topics to be 
covered include long-short term memory networks [1], deep neural networks [2], as well as their 
physics-informed counterparts [3], Dynamic Mode Decomposition (DMD) [4] and its variants, 
Koopman-mode expansion [5], sparse regression methods (e.g., SINDy) [6], reduction to spectral 
submanifolds (SSMs) [7], and resolvent analysis [8]. 
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