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ABSTRACT 

With the ever-faster advances of machine learning-based methods for science and engineering 
computational fluid dynamicists are including ever more of these differentiable techniques in their 
computational workflows. Originating from previous advances for adjoint-based methods for 
computational fluid dynamics [3] differentiable programming, the practice of utilizing gradients of 
simulations or objective functions for varied applications such as gradient-based optimization, 
gradient-based sampling approaches like Hamiltonian Monte-Carlo, or in machine learning 
applications has garnered significant interest in recent years [1]. Going further, some approaches go as 
far as replacing components of their solver with learned machine learning constructs [2] or learning 
graph-based surrogate models for their forward simulation [4]. All of these approaches open up a whole 
array of novel ways to tackle open problems in computational fluid dynamics, while at the same time 
necessitating new approaches to embed or connect existing computational fluid dynamics workflows 
with these new algorithmic approaches.  

In this minisymposium we will connect computational fluid dynamicists with researchers working at 
the intersection of these exciting fields to present their recent advances in combining differentiable 
programming techniques from machine learning and beyond, with their computational fluid dynamics 
solvers to foster exchange, and present their exciting new applications. This includes, but is not limited 
to 

1. Advances in machine learning-infused computational fluid dynamics 

2. Applications of gradient-based techniques in computational fluid dynamics applications 

3. Differentiable programming workflows with computational fluid dynamics components 
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